
Process Algebra with Local Communication

Muck van Weerdenburg1

Eindhoven University of Technology
Department of Mathematics and Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

In process algebras like μCRL and ACP communication is defined globally. In the context of
component-based architectures one wishes to define subcomponents of a system separately, includ-
ing communication within that subcomponent. We define a process algebra with an operator for
local communication that facilitates component-based architectures. Besides being compositional,
this language is aimed to be a more practical language (with respect to closely related languages)
and also allows for straightforward modelling of synchronous as well as asynchronous behaviour.

Keywords: process algebra, local communication, true concurrency, compositionality, synchrony

1 Introduction

In modelling systems, component-based architectures are a natural way of sep-
arating different parts (and subparts) of a system and specifying how these
parts relate to each other by means of, for example, communication. Espe-
cially in the case of larger systems (i.e. real-life systems and complex proto-
cols), component-based modelling is essential to avoid losing overview of the
model. We introduce a new process algebra called LoCo which aim it is to
be a practical language supporting such hierarchical modelling. Besides the
asynchronous behaviour seen in most languages, this algebra also supports
the modelling of synchronous behaviour. This allows for the modelling of, for
example, electronic circuits (from which one wants to abstract away from the
relatively small delays) or easy multiway communications.

1 E-Mail: M.J.van.Weerdenburg@tue.nl

Electronic Notes in Theoretical Computer Science 215 (2008) 191–208

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.06.028

mailto:M.J.van.Weerdenburg@tue.nl
http://www.elsevier.com/locate/entcs

The main difference between LoCo and most other process algebras is the
fact that it has a local communication mechanism and multiactions. Local
communication means that one can specify communication between compo-
nents precisely where it is relevant, whereas global communication means that
one has to specify the communication for the whole system in one place. Multi-
actions are basically multisets of actions that occur at the same time (without
communicating). With these concepts we also get a straightforward way to
model synchronous behaviour.

To illustrate the differences between global and local communication we
consider Figure 1. Here a system with two of components, A and B, that desire
to communicate via actions s and r is depicted. Now say that in another part
of the system there is a components C that, for some purpose, also uses an
action r (possibly because C is actually just B but in a different context).
In Figure 1(a) it is illustrated that it is not possible to simply define these
communications on a global level. There is no way for component A to avoid
communicating with C instead of B. The only way to avoid such mistakes is to
rename some of the actions (e.g. r in A to rA etc.). With local communication
one can simply specify that a given communication is only meant for certain
parts of the system. This is illustrated on the right in Figure 1(b).

r
C

s rA B

s communicates with r

(a) Global communication

r C

s r BA

s communicates with r

(b) Local communication

Fig. 1. Global vs. local communication

Primarily, the language LoCo was developed as a basis for mCRL2 2

[13,15], successor of μCRL [14], where an important motivation was to be
able to straightforwardly express Petri nets [17] in process algebra. In Petri
nets the firing of a transition consist of taking tokens from some places and,
at the same time, putting tokens in others. This was the initial reason to

2 mCRL2 is basically LoCo with a slightly different syntax, timing and a (more or less)
fixed data algebra.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208192

introduce multiactions, which in turn resulted in the addition of local instead
of global communication. After adding this local communication it became
clear that it made the language a truly compositional process algebra. This
led us to reversing the thought process; local communication is introduced to
make the language compositional and it is this local communication that leads
to the introduction of multiactions (as is explained below).

It is due to this origin that LoCo seems to be more closely related to
other attempts to link Petri nets and process algebra than to process algebras
developed for component-based modelling. Also the fact that the latter are
often inspired by CCS [20] or the π-calculus [22] plays a role. These languages,
such as CaSE [23], IP-calculus [10] and PiLar [11], have local communication,
but it is restricted to actions (a) communicating with their counterparts (a)
only. Or, as in PADL [6], they use strict synchronisation on actions. In such
cases, communication (or synchronisation to a single action) is tightly linked
to the parallel operators and therefore does not require multiactions. It does,
however, restrict the freedom in modelling and complicates constructions as
multiway communication. Other process algebras with local communication
or synchronisation, such as LOTOS [16] and the Interworkings language [19],
also have this strong connection between communication and parallelism.

In LoCo we have separated the concepts of parallelism and communica-
tion and linked them by means of multiactions. This also gives a more natural
intuition to the operators. Parallel composition now means just putting two
components in parallel; the execution of actions in one component is inde-
pendent of the other component. Only by applying a special operator for
communication one creates links between components. To make this possible,
multiactions are needed. The parallel composition results in multiactions as
a consequence of components executing actions at the same time. Creating
a link between two (or more) components is done by applying the local com-
munication operator. This way actions within the multiactions result in a
communication. It is also much easier to model multiway communication in
this way, in contrast to algebras where communication and parallelism are as
one. In these languages one has to specify communication per pair of compo-
nents (and pair of pair of components etc.) in such a way that the result is in
fact a multiway communication. That is, if it is even possible to do so only
by means of communication.

This separation of parallelism and communication is also seen in ACPec [3]
and the algebra from [2], which describe an ACP [4] approach to combining
process algebra and Petri nets. However, in [3] the communication used by the
local communication operator is still defined globally and thus limits composi-
tionality. Because of this one cannot use a single component multiple times in

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 193

the same system (in different contexts) without renaming its actions. On the
other hand, [2] uses a renaming operator to apply local communication, but
in a setting with data this is not really a preferable choice. It is more intuitive
for renaming to disregard data and for communication to require that data
parameters (of actions) are equivalent.

The Petri Box Calculus [8,7,9] gives a more Petri-net-based approach to
combining both formalisms. Although the communication is done in the CCS
style, multiactions are used here. Because of these multiactions multiway
communication becomes feasible, but it remains cumbersome due to the type
of communication. A component needs to know that it is going to participate
in a multiway communication or one has to introduce a special component
that takes care of it. The same holds for SCCS [21] and MEIJE [1], which add
synchrony to CCS.

What is not encountered in any of the above algebras with multiactions is
a restriction operator that only allows certain actions. Only in [2] one might
consider it present in the blocking (or encapsulation) operator (the inverse of
restriction), but blocking on its own is not sufficient in practice. The reason
to add the restriction operator is that it can often be the case that one only
wishes to allow a small number of multiactions of a process with a much
greater total amount of different multiactions. Take for example the parallel
composition of n actions, which results in 2n − 1 different multiactions. If one
only wants to allow the multiaction in which each action is present, blocking
would require one to specify 2n − 2 multiactions (instead of just one with our
restriction operator).

In Section 2 we introduce the syntax of LoCo for which we give a semantics
in Section 3. An axiomatisation for LoCo is given in Section 4 to facilitate
algebraic reasoning. As abstraction and data often play an important role in
systems, we discuss these in Sections 5 and 6, respectively. Some examples
are given in Section 7 to illustrate LoCo by modelling a Petri net and a simple
compositional system.

2 Syntax

We describe the elements of our algebra informally. A detailed definition of
the syntax can be found in [28] (without data) and [27] (with data).

The basic elements of processes are multiactions. Multiactions are bags (or
multisets) of actions, from the set of actions NA, that execute together. We
write a multiaction of actions a, b and c as 〈a, b, c〉 (or 〈b, a, c〉 as order has no
meaning in bags). Often we write multiactions that consist of only one action
without brackets (i.e. a instead of 〈a〉). We can combine such multiactions

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208194

with the common operators · and + to form a sequence of multiactions or a
nondeterministic choice between multiactions, respectively. The special case
of the empty multiaction 〈〉 is called a silent step, which we often write as τ .
To denote inaction or deadlock we write δ.

For parallel composition we have the merge ‖ which interleaves and/or
synchronises multiactions. A communication operator Γ allows explicit spec-
ification of (two or more) actions that communicate with each other (e.g.
Γ{a|b→c}(〈a, b, b〉+〈a〉), meaning that a and b communicate to c in 〈a, b, b〉+〈a〉,
is equivalent to 〈c, b〉 + 〈a〉).

To limit the behaviour of a process, it has been common to define which
actions are not allowed. However, the number of multiactions we want to pro-
hibit can increase exponentially with the number of parallel processes; putting
n actions in parallel results in 2n − 1 different multiactions. Therefore we
added a restriction operator ∇ that specifies precisely which multiactions are
allowed, by a set V of action sequences (e.g. V = {a} or V = {b|c|c, d, c|e}).
If one wishes that in the parallel composition of a,b and c action a does not
execute synchronised with another action and b and c must synchronise, one
can write ∇{a,b|c}(a ‖ b ‖ c), which behaves as a · 〈b, c〉 + 〈b, c〉 · a.

The blocking operator ∂H (commonly referred to as encapsulation opera-
tor) prohibits actions in its set parameter H from executing (e.g. ∂{a}(a +
b · 〈a, c〉), which behaves as b · δ), the hiding operator τI makes actions in I
invisible (e.g. τ{a}(〈a, b〉) becomes 〈b〉) and the renaming operator ρ renames
actions (e.g. ρ{a→b}(a) becomes b). Finally we have process references with
which we can write definitions such as P = a · P , which denotes the process
that can do infinitely many a actions.

Table 1, where V = {a1| . . . |an : a1, . . . , an ∈ NA} the set of possible
action-name combinations, C = {a1| . . . |an → b : a1, . . . , an, b ∈ NA} the
set of possible communications and R = {a → b : a, b ∈ NA} the set of all
renamings, contains a summary of the above.

Note that this syntax allows one to write sets (R) that can contain elements
with the same left hand side (e.g. {a → b, a → c}). This should not be possible
as the meaning of these sets are meant to be functions. Therefore we put the
restriction on this syntax that in the sets described by R no left hand side of
an element may be the same as the left hand side of another.

For the set C a similar restriction holds. Specifically, left hand sides must
be disjoint, meaning that {a|b → c, d|b → e} is not allowed as b occurs in both
left hand sides. Otherwise communication applied to 〈a, b, d〉 could result in
either 〈c, d〉 or 〈a, e〉, which we consider to needlessly complicate the commu-
nication (such behaviour can better be explicitly modelled by the user, in our
opinion).

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 195

Table 1
LoCo Syntax

a, b, c, . . . Single actions (from NA, also 〈a〉, 〈b〉, . . .)

〈a〉, 〈b, c, d, b〉, 〈〉, . . . Multiactions (containing single actions)

δ Deadlock/inaction

τ Silent step (also 〈〉)
+ Alternative composition

· Sequential composition

‖ Merge/Parallel composition

� Left merge

| Synchronisation operator

P , Q, . . . Process references

∇V () Restriction operator (V ⊆ V)

ΓC() Communication operator (C ⊆ C)

∂H() Blocking operator (Encapsulation, H ⊆ NA)

τI() Hiding operator (I ⊆ NA)

ρR() Renaming operator (R ⊆ R)

P = Process definition (with P a process reference)

Some additional notation is used in this document for ease of reading.
Instead of writing the sequence of terms t1, t2, . . . , tn (e.g. the actions in
a multiaction) we often write t. We also write α, β etc. instead of the
multiactions like 〈a〉.

Now that we have introduced our syntax, we will have a look at some ex-
amples of LoCo processes. Process M = (coin ‖ button) ·product ·M models a
simple vendor machine that waits for a user to insert a coin and press a button
(in any order) and then gives a product. This process has the same behaviour
as M ′ = (coin · button + button · coin + 〈coin, button〉) ·product ·M ′, where the
third alternative indicates that it is possible to insert a coin at the same time
as pressing the button. Another example is ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(A ‖ B))),
with A = a · sa and B = sb · b, which models two separate processes A and B
that have to synchronise such that a happens before b. This process has the
same behaviour as a · b (in branching bisimulation semantics [25]).

3 Operational Semantics

For the definition of the semantics of LoCo we need some auxiliary notation
(for precise definitions, see [28]). First of all, we will use the set of all multiac-
tions A = {〈a〉 : a ∈ A} and we use | to combine multiactions (i.e. 〈a〉|〈b〉

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208196

is just 〈a, b〉). To be able to reason about terms of our language, we introduce
some sets and notations. The set VP , with elements x, y, . . ., consists of pro-
cess variables. For the set of LoCo terms (described by) TP we have elements
t, u, . . . and process-closed terms p, q, . . . in Tpc (terms that do not have any
process variables or references in them).

In Table 2 we give the operational semantics of LoCo. We use the standard
transition relations −→ and −→ �, and assume we have a set E containing
process definitions. Note that the semantics of the operators ∇V , ΓC , ∂H , τI

and ρR is given separately.

Table 2
LoCo Semantics

a
〈a〉−→ � α

α−→ � τ
〈〉−→ �

t
α−→ �

t + u
α−→ �

u + t
α−→ �

t
α−→ t′

t + u
α−→ t′

u + t
α−→ t′

t
α−→ �

t · u α−→ u

t
α−→ t′

t · u α−→ t′ · u

t
α−→ �

t ‖ u
α−→ u

u ‖ t
α−→ u

t
α−→ t′

t ‖ u
α−→ t′ ‖ u

u ‖ t
α−→ u ‖ t′

t
α−→ �

t�u
α−→ u

t
α−→ t′

t�u
α−→ t′ ‖ u

t
α−→ �, u

β−→ �
t ‖ u

α|β−→ �

t
α−→ �, u

β−→ u′

t ‖ u
α|β−→ u′

u ‖ t
α|β−→ u′

t
α−→ t′, u

β−→ u′

t ‖ u
α|β−→ t′ ‖ u′

t
α−→ �, u

β−→ �
t|u α|β−→ �

t
α−→ �, u

β−→ u′

t|u α|β−→ u′

u|t α|β−→ u′

t
α−→ t′, u

β−→ u′

t|u α|β−→ t′ ‖ u′

t
α−→ �

P
α−→ �

P = t ∈ E
t

α−→ t′

P
α−→ t′

P = t ∈ E

The definition of the operators ∇V , ΓC , ∂H , τI and ρR in the semantics
requires some functions that perform the needed transformations or checks on
multiactions. To start with the blocking operator ∂H , we need to test whether
or not an action in H occurs in a multiaction. We do this by converting such
a multiaction α to a set α{} (i.e. if α is 〈a, b, c, c〉, then α{} will be {a, b, c})
and then taking the intersection of α{} and H, which gives all actions that
occur in both α and H.

Restriction operator ∇V needs to check whether or not a given multiaction
occurs in its set V (or is τ or 〈〉, which is always allowed). Because the set

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 197

V does not contain multiactions but action sequences of the form a|a|b, we
convert V to V〈〉, which is defined by {〈a1, . . . , an〉 : a1| . . . |an ∈ V }.

To apply renaming, defined by R in ρR, to a multiaction α, we write
R • α. For example, if we apply R = {a → b, b → a} to 〈a, b, b, c〉, we get
R • 〈a, b, b, c〉 = 〈R(a), R(b), R(b), R(c)〉 = 〈b, a, a, c〉.

With hiding τI , we need to remove all actions in I from multiactions. We
introduce a special function θI for this purpose. Thus, θ{a,b}(〈d, a, b, a, c〉)
would result in 〈d, c〉 and θ{a}(〈a, a〉) in 〈〉 (or τ).

For the communication operator we need a somewhat more complex def-
inition. We introduce a communication function γC that takes a multiaction
and finds all occurrences of left hand sides in C and replaces those occurrences
with the corresponding right hand side. To be somewhat more precise (note
that we implicitly use the commutativity of bags in this definition):

γC(〈a1, . . . , an〉|α) = 〈c〉|γC(α) if a1| . . . |an → c ∈ C

γC(α) = α if there is no such a1, . . . , an

So, if C is {a|b → a, c|c|d → b}, then γC(〈a, a, a, b, b, c, c, d〉) results in
〈a, a, a, b〉. Note that the extra condition on C (discussed in Section 2) is
required to make γ a true function. That is, γC(α) is a unique multiaction,
which follows from the fact that if an action can participate in two possible
communications, then these have to be equivalent due to the restriction on C
(e.g. a can communicate with the first or the second b of 〈a, b, b〉, but either
way the effect is the same).

With these auxiliary functions the semantics of LoCo is completed with
the rules from Table 3.

Table 3
LoCo Semantics (continued)

t
α−→ �

∇V (t)
α−→ �

α ∈ V〈〉 ∪ {〈〉} t
α−→ t′

∇V (t)
α−→ ∇V (t′)

α ∈ V〈〉 ∪ {〈〉}

t
α−→ �

ΓC(t)
γC(α)−→ �

t
α−→ t′

ΓC(t)
γC(α)−→ ΓC(t′)

t
α−→ �

∂H(t)
α−→ �

α{} ∩ H = ∅ t
α−→ t′

∂H(t)
α−→ ∂H(t′)

α{} ∩ H = ∅

t
α−→ �

τI(t)
θI(α)−→ �

t
α−→ t′

τI(t)
θI(α)−→ τI(t

′)

t
α−→ �

ρR(t)
R•α−→ �

t
α−→ t′

ρR(t)
R•α−→ ρR(t′)

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208198

To be able to compare and calculate with processes, we need to know when
two processes are equal (i.e. have the same behaviour). We therefore use the
default notion of (strong) bisimilarity [20,24] and write LoCo � p↔q (or just
p↔q) to denote that p and q are (strongly) bisimilar. And as the rules in
Table 2 and Table 3 are in the path format [5], we have that bisimulation ↔
is a congruence with respect to all operators.

4 Axioms

We introduce the axiomatisation in Table 4 for the semantics given in the
previous section. The axioms allow for more straightforward reasoning in
certain cases. It also shows that LoCo has a reasonably elegant algebraic
structure similar to those of other process algebras.

Table 4
LoCo Axioms

MA1 a
.
= 〈a〉 VD ∇V (δ)

.
= δ

MA2 τ
.
= 〈〉 V 1 ∇V (α)

.
= α if α ∈ V〈〉 ∪ {〈〉}

MA3 〈a, b〉 .
= 〈b, a〉 V 2 ∇V (α)

.
= δ if α �∈ V〈〉 ∪ {〈〉}

V 3 ∇V (x + y)
.
= ∇V (x) + ∇V (y)

A1 x + y
.
= y + x V 4 ∇V (x · y)

.
= ∇V (x) · ∇V (y)

A2 x + (y + z)
.
= (x + y) + z

A3 x + x
.
= x DD ∂H(δ)

.
= δ

A4 (x + y) · z .
= x · z + y · z D1 ∂H(α)

.
= α if α{} ∩ H = ∅

A5 (x · y) · z .
= x · (y · z) D2 ∂H(α)

.
= δ if α{} ∩ H �= ∅

A6 x + δ
.
= x D3 ∂H(x + y)

.
= ∂H(x) + ∂H(y)

A7 δ · x .
= δ D4 ∂H(x · y)

.
= ∂H(x) · ∂H(y)

CM 1 x ‖ y
.
= x�y + y�x + x|y TID τI(δ)

.
= δ

CM 2 αδ�x
.
= αδ · x TI 1 τI(α)

.
= θI(α)

CM 3 αδ · x�y
.
= αδ · (x ‖ y) TI 3 τI(x + y)

.
= τI(x) + τI(y)

CM 4 (x + y)�z
.
= x�z + y�z TI 4 τI(x · y)

.
= τI(x) · τI(y)

CM 5 (αδ · x)|βδ
.
= (αδ|βδ) · x

CM 6 αδ|(βδ · x)
.
= (αδ|βδ) · x RD ρR(δ)

.
= δ

CM 7 (αδ · x)|(βδ · y)
.
= (αδ|βδ) · (x ‖ y) R1 ρR(α)

.
= R • α

CM 8 (x + y)|z .
= x|z + y|z R3 ρR(x + y)

.
= ρR(x) + ρR(y)

CM 9 x|(y + z)
.
= x|y + x|z R4 ρR(x · y)

.
= ρR(x) · ρR(y)

CM 10 〈a〉|〈b〉 .
= 〈a, b〉

GD ΓC(δ)
.
= δ

CD1 δ|αδ
.
= δ G1 ΓC(α)

.
= γC(α)

CD2 αδ|δ .
= δ G3 ΓC(x + y)

.
= ΓC(x) + ΓC(y)

G4 ΓC(x · y)
.
= ΓC(x) · ΓC(y)

With a, b ∈ NA, α, β ∈ A, αδ, βδ ∈ A ∪ {δ} and x, y ∈ VP .

If we can derive q from p with the axioms (in the ordinary equational sense),
we write LoCo p

.
= q (or just p

.
= q). And if we do so, we obviously want

the same to hold for bisimulation, which is stated in the following theorem.

Theorem 4.1 Let p, q ∈ Tpc. The axiomatisation of LoCo is sound with
respect to strong bisimulation (i.e. LoCo p

.
= q ⇒ LoCo � p↔q).

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 199

Proof. This proof is very straightforward and therefore not given here. How-
ever, it can be found in [28].

The other way around is also a desired property.

Theorem 4.2 Let p, q ∈ Tpc. The axiomatisation of LoCo is complete with
respect to strong bisimulation (i.e. LoCo � p↔q ⇒ LoCo p

.
= q).

Proof. The full proof can be found in [28].

Because we also wish to use recursive processes, we will (at least) need some
extension to the axioms given in Table 4. We extend

.
= with the following

rule:

P = t ∈ E

P
.
= t

From the rules for process definitions in Section 3 the soundness of this rule
clearly follows.

5 Abstraction

If we want τ (or empty multiset 〈〉) to be a “real” silent step, we want to be able
to remove τ where its presence cannot be determined. Due to the nature of
multiactions, it is already the case that if τ is synchronised with (i.e. executed
at the same time as) some action α, the τ “disappears” (applying axiom MA2
to τ |α gives 〈〉|α and with CM 10 we get just α). A multiaction is not just
a multiset of actions, but a multiset of observable actions. There is always
the possibility that unobservable actions happen at the same time. Note that
this behaviour of the synchronisation operator is not to be confused with the
behaviour of the communication operator in, for example, ACP, which would
deadlock (because τ cannot communicate). Also note that this behaviour is
the same as seen in, for example, the Petri Box Calculus and similar to that
in SCCS (apart from the different interpretation of this multiaction identity).

However, this is not the only place where we wish to hide these silent
steps. In these cases, strong bisimulation is no longer suitable and we will use
(rooted) branching bisimulation [25,26]. For this form of equivalence, we also
need a matching (i.e. sound and complete) axiomatisation. Fortunately, the
axioms given before are still sound, but to make the axiomatisation complete
again (i.e. to have axioms that reflect the behaviour of τ) it is sufficient to
add the following two axioms, as in [12].

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208200

T1 x · τ .
= x

T2 x · (τ · (y + z) + y)
.
= x · (y + z)

Theorem 5.1 The axiomatisation of LoCo is sound with respect to (rooted)
branching bisimulation.

Proof. In [28] one can find the soundness proofs of the axioms T1 and T2.
The other axioms of LoCo, which have already been proven to be sound with
respect to ↔, do not need to be proven again, as ↔ ⊂ ↔rb holds.

Theorem 5.2 The axiomatisation of LoCo is complete with respect to rooted
branching bisimulation.

Proof. The proof is similar to that in [12].

6 Data

In many systems, data plays an essential role and is therefore a neces-
sity for any practical language. We add data by adding parameters to ac-
tions. So, instead of actions a, b etc. we now also have actions like a(1),
b(true, [c0, c1(1, 2), c0]) and b(4, error). The precise data expressions that are
allowed as parameters are defined by a data algebra A. All we need to know
about it is that it contains a number of data types, one of which is the boolean
type (with the default constants (t, f) and operators). Detailed requirements
are given in [27], as well as a more detailed definition of syntax and semantics
with data.

We also need the summation
∑

d:D p, the conditional operator b → p and
data parameters for process references. The behaviour of

∑
d:D p is the same

as the alternative composition of all p[e/d] (i.e. p with every unbounded
occurrence of d replaced by e), for each e in data type D. Conditional b →
p behaves as p or deadlock if the boolean condition b is equivalent to t or
f , respectively. With process references with data we can write definitions
such as P (n : N) =

∑
m:N m < n → a(m), meaning that, for example, process

reference P (5) is equivalent to a(0) + a(1) + a(2) + a(3) + a(4).

In short, the extensions to our syntax is as follows:

a(. . .), b(. . .), . . . Single action with data parameters
∑

d:D Summation over variable d of type D

→ Conditional operator

P (. . .), Q(. . .), . . . Process references with data parameters

P (d : D, . . .) = Process definition with parameters

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 201

These extensions must also be reflected in the semantics and axioms. Because
of the fact that actions can now have data parameters, the semantics of oper-
ators ∇V , ∂H , τI and ρR must be reformulated such that data will not affect
their behaviour (i.e. data is ignored). For the communication function we
will only mention that, with data, we wish actions can only communicate if,
and only if, they have equivalent parameters. Also, the rules for single actions
and process references must be extended to include data parameters. As these
changes are rather trivial, we will not give them here.

The additional rules and axioms are as given in Table 5 and Table 6. Note
that we assume to have capture avoiding substitution and alpha conversion in
.
=.

Table 5
Additional LoCo Semantics for Data

t
α−→ �

b → t
α−→ �

A � b
t

α−→ t′

b → t
α−→ t′

A � b

t[e/d]
α−→ �

P
d:D t

α−→ �
e ∈ D

t[e/d]
α−→ t′

P
d:D t

α−→ t′
e ∈ D

Table 6
Extra LoCo Axioms for Data

C1 t → x
.
= x SUM1

P
d:D x

.
= x

C2 f → x
.
= δ SUM3

P
d:D p

.
=

P
d:D p + p[e/d] with e ∈ D

V6 ∇V (
P

d:D p)
.
=

P
d:D ∇V (p) SUM4

P
d:D(p + q)

.
=

P
d:D p +

P
d:D q

D6 ∂H(
P

d:D p)
.
=

P
d:D ∂H(p) SUM5 (

P
d:D p) · y .

=
P

d:D(p · y)
TI6 τI(

P
d:D p)

.
=

P
d:D τI(p) SUM6 (

P
d:D p)�y

.
=

P
d:D(p�y)

R6 ρR(
P

d:D p)
.
=

P
d:D ρR(p) SUM7 (

P
d:D p)|y .

=
P

d:D(p|y)
G6 ΓC(

P
d:D p)

.
=

P
d:D ΓC(p) SUM7 ′ x|(P

d:D q)
.
=

P
d:D(x|q)

With x, y ∈ VP and p, q ∈ Tpc.

Of course, also with these extensions we want to have a sound and complete
axiomatisation, as stated in the following theorems. Note that the complete-
ness of the axiomatisation now depends on the completeness of derivability in
the data algebra A. As we do not explicitly consider this algebra, we say that
our axiomatisation is relatively complete. This means that it is complete if
we have completeness of derivability in A.

Theorem 6.1 The axiomatisation of LoCo with data is sound with respect to
(rooted) branching bisimulation.

Proof. This proof is very straightforward and therefore not given here. How-
ever, it can be found in [27].

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208202

Theorem 6.2 The axiomatisation of LoCo with data (without T1 and T2)
is relatively complete with respect to strong bisimulation.

Proof. This proof is similar to completeness proof in [18]. Also, the full proof
can be found in [27].

Theorem 6.3 The axiomatisation of LoCo with data is relatively complete
with respect to rooted branching bisimulation.

Proof. The proof is similar to that in [12].

7 Examples

To illustrate the use of LoCo, we look at the following examples.

7.1 Petri net

The (coloured) Petri net in Figure 2 describes a little system that takes to-
kens (natural numbers) from place P1 one at a time, performs a calculation
on the token, and places it in P4. We verify this behaviour by considering
an interpretation of this Petri net in LoCo. We assume a true concurrency
semantics for the Petri net. Although an interleaving semantics would make
no difference here due to the structure of the example, the translation to LoCo
itself does not put this restriction on the system.

Q

P3P2

P1 P4

Enter Exit

Calc

1 2 2 1

Fig. 2. A simple Petri net

Places are modelled by recursive processes parameterised with the contents
of such a place. For places P1, P2, P3 and P4 this is a bag of natural numbers
and for place Q a bag of (with = {1}). Transitions are modelled by recur-
sive processes without parameters (as transitions are memoryless) consisting
of a single multiaction. Actions rx and sx are used to model the receiving
respectively sending of a token by a place or transition X. These actions
correspond to the incoming and outgoing arrows, respectively. If there are

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 203

two such incoming or outgoing arrows, the actions are labelled with the cor-
responding number from Figure 2. Thus transition Enter has an action r1

enter

with which he can receive a token from place P1

The whole system is a parallel composition of the places and transitions
enclosed by communication (modelling the links between places and transi-
tions), hiding and restriction. Note that places P1 and P4 are enclosed by
a blocking operator because they do not have an incoming or outgoing link,
respectively. Also note that the behaviour of places is somewhat restricted
here for simplicity; normally it would be possible to atomically take several
tokens from one place, as well as putting new ones in it.

Pi(b : Bag(N)) =
∑

n:N rpi
(n) · Pi(b ∪ {n}) +

∑
n:N n ∈ b → spi

(n) · Pi(b \ {n})
Q(b : Bag()) =

∑
i: rq(i) · Q(b ∪ {i}) +

∑
i: (i ∈ b) → sq(i) · Q(b \ {i})

Enter =
∑

n:N r1
enter(n)|r2

enter(1)|senter(n) · Enter

Calc =
∑

n:N rcalc(n)|scalc(f(n)) · Calc

Exit =
∑

n:N rexit(n)|s1
exit(n)|s2

exit(1) · Exit

PN (in : Bag(N), out : Bag(N)) =

∇{}(τ{c}(Γ{sp1 |r1
enter→c, sq |r2

enter→c, senter |rp2→c,

sp2 |rcalc→c, scalc |rp3→c, sp3 |rexit→c, s1
exit |rp4→c, s2

exit |rq→c}(

∂{rp1}(P1(in)) ‖ P2(∅) ‖ P3(∅) ‖ ∂{sp4}(P4(out)) ‖
Q({1}) ‖ Enter ‖ Calc ‖ Exit))))

With basic expansion of the parallel operators and application of communica-
tion, hiding and restriction, we get the following result.

PN (in : Bag(N), out : Bag(N))
.
=∑
n:Nat n ∈ in → τ · PN (in \ {n}, out ∪ {f(n)})

As one can see, and could have expected, the behaviour of the system is
the same as that of places P1 and P4 connected by transition Calc, which
simply takes a number n from P1 and puts f(n) in P4.

7.2 Components

In Figure 3, a system C, which checks whether components S1 and S2 return
the same result for a given input, is depicted. Both components S1 and S2 take

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208204

an integer as input and return an integer as output. For computation they use
components Mul and Plus , that multiply and add two integers, respectively.
In addition, S1 also uses One, that can always return a 1 on its output.
Component Cmp takes two integers and returns t if they are equal (and f
otherwise). Note that all computations occur instantaneous; a component
produces output at the same time it takes it input.

Cmp

One
Plus

Mul

S1

S2

Mul

Plus

C

Fig. 3. A simple compositional system

All components are straightforwardly implemented as follows. Incoming
arrows of a component X correspond to actions rX and outgoing arrows cor-
respond to actions sX . If a component has more that one of such actions,
then they are numbered from top to bottom as seen in Figure 3. Note that
the individual components’ specifications are completely self contained.

One = sone(1) · One

Mul =
P

x:Z

P
y:Z r1

mul(x)|r2
mul(y)|smul(x ∗ y) · Mul

Plus =
P

x:Z

P
y:Z r1

plus(x)|r2
plus(y)|splus(x + y) · Plus

S1 = ∇{rs1 |ss1}(ρ{smul→ss1}(τ{c}(Γ{r1
mul

|r1
plus

→rs1 , sone |r2
plus

→c, splus |r2
mul

→c}(

One ‖ Plus ‖ Mul))))

S2 = ∇{rs2 |ss2}(ρ{splus→ss2}τ{c}(Γ{r1
mul

|r2
mul

|r2
plus

→rs2 , smul |r1
plus

→c}(Mul ‖ Plus))))

Cmp =
P

x:Z

P
y:Z r1

cmp(x)|r2
cmp(y)|scmp(x = y) · Cmp

C = ∇{rc|sc}(ρ{scmp→sc}(τ{c}(Γ{rs1 |rs2→rc, smul |r1
cmp→c, splus |r2

cmp→c}(S1 ‖ S2 ‖ Cmp))))

We can derive the following for S1, S2 and C.

S1
.
=

∑
x:Z rs1(x)|ss1(x ∗ (x + 1)) · S1

S2
.
=

∑
x:Z rs2(x)|ss2(x ∗ x + x) · S2

C
.
=

∑
x:Z rc(x)|scmp(t) · C

It is not possible to simple move the communication operators to the top
level as would be required in language that have global communication instead

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 205

of local communication. If one would do so, it is impossible for, say, component
One to know that he is communicating with the right Plus component. At
least one instance of both the Plus and Mul components need to be changed
to avoid conflicts in action names.

Although in this example the consequences of global communication are
not extremely problematic, with bigger systems this becomes quite bother-
some. Also, components S1 and S2 are typically developed independently.
This means that one has to change the internals of S1 and S2 in order to use
them safely in one system with global communication. It is clear that this is
contrary to the ideas of component-based modelling.

8 Conclusion

We have introduced the process algebra LoCo that is truly compositional due
to its local communication operator and the use of multiactions. It has a
formal syntax, semantics and a sound and complete axiomatisation. We have
included two small examples to illustrate the compositionality of LoCo and
the ease with which Petri nets can be modelled in it.

As this work is mainly a basis for the mCRL2 language, future work will
be continued in this context. This includes the addition of time, formal trans-
lations of Petri nets to mCRL2 and adapting existing proof techniques (such
as those used with μCRL, for example) to the new setting.

References

[1] Austry, D. and G. Boudol, Algèbre de processus et synchronisation, Theoretical Computer
Science 30 (1984), pp. 91–131.

[2] Baeten, J. and A. Basten, Partial-order process algebra (and its relation to Petri nets), in:
J. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process Algebra, Elsevier, 2001 pp.
769–872.

[3] Baeten, J. and J. Bergstra, Non interleaving process algebra, in: E. Best, editor, Proceedings
of the 4th International Conference on Concurrency Theory (CONCUR ’93), Lecture Notes in
Computer Science 715 (1993), pp. 308–323.

[4] Baeten, J. and W. Weijland, “Process Algebra,” Cambridge Tracts in Theoretical Computer
Science 18, Cambrdige University Press, 1990.

[5] Baeten, J. C. M. and C. Verhoef, A congruence theorem for structured operational semantics
with predicates, in: E. Best, editor, Proceedings of the 4th International Conference on
Concurrency Theory (CONCUR ’93), Lecture Notes in Computer Science 715 (1993), pp.
477–492.

[6] Bernardo, M., P. Ciancarini and L. Donatiello, Architecting families of software systems with
process algebras, ACM Trans. Softw. Eng. Methodol. 11 (2002), pp. 386–426.

[7] Best, E., R. Devillers and J. G. Hall, The box calculus: a new causal algebra with multi-
label communication, in: G. Rozenberg, editor, Advances in Petri Nets: The DEMON Project,
Lecture Notes in Computer Science 609 (1992), pp. 21–69.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208206

[8] Best, E., R. Devillers and M. Koutny, “Petri net algebra,” Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

[9] Best, E., R. Devillers and M. Koutny, A unified model for nets and process algebra, in:
J. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process Algebra, Elsevier, 2001
pp. 873–944.

[10] Bracciali, A., A. Brogi and F. Turini, A framework for specifying and verifying the behaviour
of open systems, Journal of Logic an Algebraic Programming 63 (2005), pp. 215–240.

[11] Cuesta, C. E., P. de la Fuente, M. Barrio-Solórzano and M. E. Beato, An “abstract
process” approach to algebraic dynamic architecture description, Journal of Logic an Algebraic
Programming 63 (2005), pp. 177–214.

[12] Groote, J. and S. Luttik, A complete axiomatisation of branching bisimulation for process
algebras with alternative quantification over data, Technical Report SEN-R9830, Centrum voor
Wiskunde en Informatica (CWI) (1998).

[13] Groote, J., A. Mathijssen, M. van Weerdenburg and Y. Usenko, From μCRL to mCRL2:
Motivation and outline, in: L. Aceto and A. D. Gordon, editors, Proceedings of the Workshop
Essays on Algebraic Process Calculi (APC 25), Electronic Notes in Theoretical Computer
Science 162, 2006, pp. 191–196.

[14] Groote, J. and A. Ponse, The syntax and semantics of μCRL, in: A. Ponse, C. Verhoef and
S. van Vlijmen, editors, Algebra of Communicating Processes, Workshops in Computing, 1994,
pp. 26–62.

[15] Groote, J. F., A. Mathijssen, M. Reniers, Y. Usenko and M. van Weerdenburg, The formal
specification language mcrl2, in: E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa,
editors, Methods for Modelling Software Systems (MMOSS), number 06351 in Dagstuhl
Seminar Proceedings, 2007.

[16] ISO, ISO 8807: Information processing systems – open systems interconnection – LOTOS
– a formal description technique based on the temporal ordering of observational behaviour,
Standard, International Standards Organization, Geneva, Switzerland (1987), first edition.

[17] Jensen, K., “Coloured Petri nets: basic concepts, analysis methods and practical use, vol. 2,”
Springer-Verlag, 1995.

[18] Luttik, B., “Choice Quantification in Process Algebra,” Ph.D. thesis, University of Amsterdam
(2002).

[19] Mauw, S. and M. Reniers, A process algebra for interworkings, in: J. Bergstra, A. Ponse and
S. Smolka, editors, Handbook of Process Algebra, Elsevier, Amsterdam, 2001 pp. 1269–1327.

[20] Milner, R., “A Calculus of Communicating Systems,” Springer-Verlag New York, Inc., 1982.

[21] Milner, R., Calculi for synchrony and asynchrony, Theoretical Computer Science 25 (1983),
pp. 267–310.

[22] Milner, R., “Communicating and mobile systems: the π-calculus,” Cambridge University Press,
1999.

[23] Norton, B., G. Lüttgen and M. Mendler, A compositional semantic theory for synchronous
component-based design., in: R. M. Amadio and D. Lugiez, editors, CONCUR 2003 -
Concurrency Theory, 14th International Conference, Lecture Notes in Computer Science, 2003,
pp. 453–467.

[24] Park, D., Concurrency and automata on infinite sequences, in: P. Deussen, editor, Proceedings
of the 5th GI-Conference on Theoretical Computer Science, Lecture Notes in Computer Science
104 (1981), pp. 167–183.

[25] van Glabbeek, R. J., The linear time - branching time spectrum II, in: E. Best, editor, CONCUR
’93: Proceedings of the 4th International Conference on Concurrency Theory, Lecture Notes in
Computer Science 715 (1993), pp. 66–81.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208 207

[26] van Glabbeek, R. J. and W. P. Weijland, Branching time and abstraction in bisimulation
semantics, J. ACM 43 (1996), pp. 555–600.

[27] van Weerdenburg, M., “GenSpect Process Algebra,” Master’s thesis, Eindhoven University of
Technology (2004).

[28] van Weerdenburg, M., Process algebra with local communication, Technical Report 05/05,
Eindhoven University of Technology (2005).

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 215 (2008) 191–208208

	Introduction
	Syntax
	Operational Semantics
	Axioms
	Abstraction
	Data
	Examples
	Petri net
	Components

	Conclusion
	References

