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Abstract

In process algebras like µCRL [6] and ACP [2] communication is defined globally. In the context
of component based architectures one wishes to define subcomponents of a system separately,
including communication within that subcomponent. In this document we define a process algebra
that has a local communication function that facilitates component based architectures.

1 Introduction

In modelling systems, component based architectures are a natural way of separating different parts
(and sub-parts) of a system and specifying how these parts relate to each other by means of, for
example, communication. A way of specifying such systems is by the use of process algebras, which
are formally defined and facilitate verification. In process algebras like µCRL [6] and ACP [2] one can
put components in parallel and define communication globally. Parallel operators interleave actions
or let them communicate, if they are allowed to by the global communication function. However,
because in the context of component based architectures one wishes to define subcomponents of a sys-
tem separately, including communication within that subcomponent, globally defined communication
requires one to keep in mind which actions and communications are used in other components to be
able to define proper communication of one of the components.

To support hierarchical modelling, we define a process algebra (LoCo) that has a (local) communi-
cation operator instead of the global communication function. When introducing such an operator,
however, one has to reconsider the semantics of parallel operators. With global communication in
ACP, and the like, one has the auxiliary parallel operator |, which forces communication on the first
actions of the process parameters. If communication between a pair of actions was not defined, dead-
lock was the result. But one does not expect a local communication operator to have a similar effect on
an operator somewhere within the process that is its parameter. Instead one wishes it to behave like
any other operator, that is affecting the actions of a process parameter (independent of the operators
that “produced” such an action).

A solution to this situation are multiactions. Multiactions are collections of actions that happen
simultaneously, but independently (i.e. they do not communicate). So instead of letting | force
communication, it will now synchronise (multi)actions, in which communication can be applied by a
communication operator. Such multiactions have been used before to add synchrony to CCS [5] or
BPA [7].

Note that in this document we will not consider the use of data, but addition of data is straightfor-
ward.

We first describe the components of our algebra informally. The basic elements of processes are
multiactions. Multiactions are bags of actions that execute together. We write a multiaction of ac-
tions a, b and c as 〈a, b, c〉 (or 〈b, a, c〉 as order has no meaning in bags). Often we write multiactions
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that consist of only one action as that action alone (i.e. a instead of 〈a〉). We can combine such multi-
actions with the common operators · and + to form a sequence of multiactions or a nondeterministic
choice between multiactions, respectively. To denote inaction or deadlock we write δ.

For parallel composition we have the merge ‖ which interleaves and/or synchronises multiactions.
For example, (a + b) ‖ (c · d) has the same behaviour as (a + b) · c · d + c · ((a + b) · d + d · (a + b) +
(〈a, d〉 + 〈b, d〉)) + (〈a, c〉 + 〈b, c〉) · d. A new communication operator Γ allows explicit specification
of (two or more) actions that communicate with each other (e.g. Γ{a|b→c}(P ), which means that a
and b communicate to c in process P ), besides just being synchronised. To limit the behaviour of
a process, it has been common to define which actions are not allowed. However, as the number of
multiactions we want to prohibit can increase exponentially with the number of parallel processes, we
added a restriction operator ∇ that specifies precisely which multiactions are allowed, by a set V of
action sequences (e.g. V = {a} or V = {b|c|c, d, c|e}). If one wishes that in the parallel composition
of a,b and c action a does not execute synchronised with another action and b and c must synchronise,
one can write ∇{a,b|c}(a ‖ b ‖ c), which behaves as a · 〈b, c〉+ 〈b, c〉 · a.

The blocking operator ∂H (commonly referred to as encapsulation operator) prohibits actions in its
set parameter H from executing (e.g. ∂{a}(a + b · 〈a, c〉), which behaves as b · δ), the hiding operator
τI makes actions in I invisible (e.g. τ{a}(〈a, b〉) becomes 〈b〉) and the renaming operator ρ renames
actions (e.g. ρ{a→b}(a) becomes b). The special case of the empty multiaction 〈〉 is called a silent
step, which we often write as τ . Finally we have process variables with which we can write equations
as X = a ·X to denote the process that can do infinitely many a’s.

In the rest of this document we formally define the syntax and semantics of LoCo and introduce
an axiomatisation, which we will show to be sound and complete. We also include some examples and
a set of alphabet axioms.

2 Syntax

For the description of the syntax of LoCo we use a BNF like notation. We use | to separate
alternatives, [ ] to specify an optional part and ( )∗ for zero or more occurrences of an expression. As
terminals we use sets, meaning that any element of that set is allowed at that position.

Definition 2.1. Let NA be the set of action names and X the set of process variables. Our pro-
cess algebra LoCo has the following syntax. (AM describes (multi)actions, N “communication action
names”, V sets of N (for ∇), C sets of communication relations (for Γ), IH sets of action names
(to be hidden with τ or blocked with ∂), R renaming functions (for ρ), TP LoCo terms and E LoCo
expressions.)

AM ::= NA | 〈[NA (,NA)∗]〉
N ::= NA (| NA)∗

N+ ::= NA | NA (| NA)∗

V ::= {N (, N)∗}
C ::= {N+ → NA (, N+ → NA)∗}
IH ::= {NA (,NA)∗}
R ::= {NA → NA (,NA → NA)∗}
TP ::= AM | δ | τ | TP + TP | TP · TP | TP ‖ TP | TP ‖ TP | TP |TP | X |

(TP ) | ∇V (TP ) | ΓC(TP ) | ∂IH (TP ) | τIH (TP ) | ρR(TP )
E ::= X = TP | E,E

As not all (infix) operators are necessarily enclosed within parentheses (e.g. we may write a · b + c),
terms can be interpreted in different ways (e.g. (a · b) + c or a · (b + c)). To overcome this problem
we give all infix operators a binding strength with the meaning that if, for example, · binds stronger
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than + we interpret a · b + c as (a · b) + c. The order of the operators (in decreasing strength) is as
follows: ·, |, ‖ , ‖, +. We assume all infix operators are right associative.

Instead of writing the sequence of terms t1, t2, . . . , tn (e.g. the actions in a multiaction) we often
write

−→
t . The set of all actions A is defined by NA, and the set of all multiactions A is defined by

{〈−→a 〉 | −→a ∈
−→
A}. We also write α instead of the action 〈−→a 〉.

To be able to reason about terms of our language, we introduce some sets and notations. The set
VP , with elements x, y, . . ., consists of process variables. For the set of LoCo terms (described by) TP

we have elements t, u, . . . and process-closed terms p, q, . . . in Tpc (terms that do not have any process
variables in them).

Note that this syntax allows one to write sets (R and C) that can contain elements with the same
left hand side (e.g. {a → b, a → c}). This should not be possible as the meaning of these sets are
meant to be functions. Therefore we put the restriction on this syntax that in the sets described by
R and C no left hand side of an element may be the same as the left hand side of another.

Another restriction on C is that left hand sides must be disjoint (i.e. {a|b → c, d|b → e} is not
allowed as b occurs in both left hand sides). This is to ensure unicity of the communication (see the
semantics later on).

Now we have defined our syntax, we will have a look at some examples of LoCo processes. Pro-
cess M = (coin ‖ button) · product · M models a simple vendor machine that waits for a user to
insert a coin and press a button (in any order) and then gives a product. This process has the same
behaviour as M ′ = (coin · button + button · coin + 〈coin, button〉) · product · M ′. Another example
is ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(A ‖ B))), with A = a · sa and B = sb · b, which models two separate
processes A and B that have to synchronise such that a happens before b. We come back to this last
process in the examples in Section 8.

3 Operational Semantics

Now we have a formal syntax, we give meaning to terms by the following semantics.

Definition 3.1. Let T and T ′ be some sets. We call F ⊆ T × T ′ a function from T to T ′ if, and
only if, ∀t∈T (∀t′1,t′2∈T ′(〈t, t′1〉, 〈t, t′2〉 ∈ F ⇒ t′1 = t′2)) holds. The subset of functions in the powerset
of T × T ′ is written as T → T ′ (i.e. T → T ′ ⊆ P(T × T ′), with F ∈ T → T ′ if, and only if, F is a
function from T to T ′).

Note that we often write a colon (:) instead of ∈.

Definition 3.2. Let T and T ′ be sets and F : T → T ′. The domain of F , notation dom(F ), is
defined as follows:

dom(F ) = {t | ∃t′∈T ′(〈t, t′〉 ∈ F )}

Definition 3.3. Let T and T ′ be sets and F : T → T ′. Also, let t ∈ dom(F ). We define the function
application, notation F (t) (i.e. F applied to t), as follows:

F (t) = t′ with 〈t, t′〉 ∈ F

Definition 3.4. Let T and T ′ be sets with T ⊆ T ′ and F : T → T ′. The domain extension F+ of F
is defined by:

F+ = F ∪ {〈t, t〉 | t ∈ T ∧ t 6∈ dom(F )}
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We describe the semantics of LoCo by looking at which actions can be executed by a process and
what (process) the result of such an action is. This is expressed in one of the following definitions,
but first we need to express that the order of actions within a multiaction is irrelevant (i.e. 〈−→a ,

−→
b 〉

and 〈
−→
b ,−→a 〉 are the same). We do this by interpreting them as bags of actions.

Definition 3.5. Let S be a set. A bag B of S is a function S → N, with the meaning that an element
s ∈ S occurs B(s) times in the bag B. We write a bag as [s1, s2, . . . , sn], such that an element s ∈ S
occurs B(s) times exactly. We write B(S) to denote the set of all bags of S (i.e. B ∈ B(S)).

Definition 3.6. Let S be a set and let B1 and B2 be bags of S (i.e. B1, B2 ∈ B(S)). The joining
operator ⊕S : B(S)× B(S) → B(S) is defined by (B1 ⊕S B2)(s) = B1(s) + B2(s) for all s ∈ S.

Definition 3.7. Let S be some set and B,C ∈ B(S), T ⊆ S and s ∈ S. We introduce the intersection
∩ : B(S)× P(S) → P(S), the bag inclusion ⊆: B(S)× B(S) → B, the element test ∈: S × B(S) → B
and the size function | | : B(S) → N as follows:

s ∈ B = B(s) > 0
[] ∩ T = ∅
([s]⊕S B) ∩ T = B ∩ T if s 6∈ T
([s]⊕S B) ∩ T = {s} ∪ (B ∩ T ) if s ∈ T
B ⊆ C = ∀s∈S(B(s) ≤ C(s))
|B| =

∑
s∈S B(s)

Note that a bag B ∈ B(S) can be considered to be of the following structure: B = [] or B = [s]⊕S C,
with s ∈ S and C ∈ B(S). We usually write ⊕ instead of ⊕S , if this cannot lead to any confusion. In
this document we only consider finite bags.

Definition 3.8. We call A= NA the set of semantic actions (i.e. a ∈A).

Let t be some syntactic term. The interpretation of t will be written as [[t]]. The specific value of [[t]]
will be separately defined for all (needed) forms of t.

Definition 3.9. Let α be a multiaction, with α = 〈a1, a2, . . . , an〉. The interpretation of a multiaction
[[α]] is defined by [[〈a1, a2, . . . , an〉]] = [a1, a2, . . . , an].

The following three definitions give a generic way to interpret the sets of the operators ∇, ∂,Γ, τ, ρ,
described by V, IH , C, R in our syntax.

Definition 3.10. Let S be some syntactic set of terms (i.e. a collection of syntactic terms t1, . . . , tn
separated by commas and enclosed in { and }). The interpretation of S (as a true set) is defined as
follows:

[[{t1, . . . , tn}]] = {[[t1]], . . . , [[tn]]}

Definition 3.11. Let t1, t2, . . . , tn be some terms. The interpretation of t1|t2| . . . |tn is defined as
follows:

[[t1|t2| . . . |tn]] = [[[t1]], [[t2]], . . . , [[tn]]]

Definition 3.12. Let t and t′ be some syntactic terms. The interpretation of → is defined as follows:

[[t → t′]] = 〈[[t]], [[t′]]〉

In the semantics we use certain functions which are defined below. These functions are for instance
needed to determine whether or not ∇V will (dis)allow an action or whether or not an action is hidden
by τI .
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Definition 3.13. Let S be a function NA → NA and let a ∈A. Also, let m ∈ B(A). The function
mapping operator • : (NA → NA)× B(A) → B(A) is defined as follows:

S • [] = []
S • ([a]⊕m) = [S+(a)]⊕ (S •m)

Definition 3.14. Let I be a set of action names (i.e. I ⊆ NA) and let a ∈A. Also, let m ∈ B(A).
The hiding function θ : B(A)× P(NA) → B(A) is defined as follows:

θ([], I) = []
θ([a]⊕m, I) = θ(m, I) if a ∈ I
θ([a]⊕m, I) = [a]⊕ θ(m, I) if a 6∈ I

For the communication operator we need a somewhat more complex definition. We introduce a
communication function that takes the interpretation of a multiaction and finds all occurrences of left
hand sides in the C parameter of the operator and replaces those occurrences with the corresponding
right hand side.

Definition 3.15. Let NB = {b | b ∈ B(NA) ∧ 1 < |b|}, a ∈A, b ∈ NB and m,n, o ∈ B(A).
Also let C : NB → NA with ∀〈b,a〉,〈c,a〉∈C(b 6= c ⇒ ∀n∈b(n 6∈ c)). The communication function
γ : B(A)× (NB → NA) → B(A) is defined by the following definition:

γ(m⊕ n, C) = [a]⊕ γ(n, C) if 〈m,a〉 ∈ C
γ(m,C) = m if 〈m,a〉 6∈ C

Note that the extra condition on C is required to make γ a true function (i.e. γ(m,C) is a unique
bag). This is also a restriction on the syntax that was given earlier.

Definition 3.16. Let X be a process variable and t a term (possibly containing X). A recursive
specification is a set of equations of the form X = t.

Let p and q be terms that do not contain any free variables and let m ∈ B(A). The relation p
m−→q states

that the process described by p can make a transition by executing a multiaction, with interpretation
m, and will behave as the process described by q after it. The predicate p

m−→ X states that the process
described by p can terminate by executing a multiaction with interpretation m.

Definition 3.17. Let E be a recursive specification. We define process semantics SemLoCo(E) =
〈TP , B(A),−→,−→ X〉, with a transition predicate −→, taking two processes (from TP ) and an in-
terpretation of an action (from B(A)) as parameters, and a termination predicate −→ X, taking one
process and an interpretation of an action as parameters, inductively by the following rules.

a
[a]−→ X α

[[α]]−→ X τ
[]−→ X

t
m−→ X

t + u
m−→ X

u + t
m−→ X

t
m−→t′

t + u
m−→t′

u + t
m−→t′

t
m−→ X

t · u m−→u

t
m−→t′

t · u m−→t′ · u
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t
m−→ X

t ‖ u
m−→u

u ‖ t
m−→u

t
m−→t′

t ‖ u
m−→t′ ‖ u

u ‖ t
m−→u ‖ t′

t
m−→ X, u

n−→ X

t ‖ u
m⊕n−→ X

t
m−→t′, u

n−→u′

t ‖ u
m⊕n−→ t′ ‖ u′

t
m−→ X, u

n−→u′

t ‖ u
m⊕n−→u′

u ‖ t
m⊕n−→u′

t
m−→ X

t ‖ u
m−→u

t
m−→t′

t ‖ u
m−→t′ ‖ u

t
m−→ X, u

n−→ X

t|um⊕n−→ X

t
m−→ X, u

n−→u′

t|um⊕n−→u′

u|tm⊕n−→u′

t
m−→t′, u

n−→u′

t|um⊕n−→ t′ ‖ u′

t
m−→ X

∇V (t) m−→ X
m ∈ [[V ]] ∪ {[]}

t
m−→t′

∇V (t) m−→∇V (t′)
m ∈ [[V ]] ∪ {[]}

t
m−→ X

ΓC(t)
γ(m,[[C]])−→ X

t
m−→t′

ΓC(t)
γ(m,[[C]])−→ ΓC(t′)

t
m−→ X

∂H(t) m−→ X
m ∩ [[H]] = ∅

t
m−→t′

∂H(t) m−→∂H(t′)
m ∩ [[H]] = ∅

t
m−→ X

τI(t)
θ(m,[[I]])−→ X

t
m−→t′

τI(t)
θ(m,[[I]])−→ τI(t′)

t
m−→ X

ρR(t)
[[R]]•m−→ X

t
m−→t′

ρR(t)
[[R]]•m−→ ρR(t′)

t
m−→ X

X
m−→ X

X = t ∈ E
t

m−→t′

X
m−→t′

X = t ∈ E

Table 1: LoCo Semantics

To be able to compare and calculate with processes, we need to know when two processes are equal
(i.e. have the same behaviour). We use the equality given by the following definition.

Definition 3.18. Let SemLoCo(E) = 〈TP , B(A),−→,−→ X〉, with E a set of process expressions
and −→ and −→ X the transition relations on processes TP with multiactions B(A), be a process
semantics. Also, let t,t′,u and u′ be process terms, in which process variables may occur only if they
are in E, and m ∈ B(A). A bisimulation is a relation B on processes such that if tBu:

• for all t′ and m, t
m−→t′ means that there exists a u′ with u

m−→u′ and t′Bu′

• for all u′ and m, u
m−→u′ means that there exists a t′ with t

m−→t′ and t′Bu′
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• for all m, t
m−→ X means that u

m−→ X

• for all m, u
m−→ X means that t

m−→ X

We write the union of all bisimulation relations B as ↔. To state that two processes p and q are
bisimilar we write LoCo � p↔q (or just p↔q).

As the rules in Table 1 are in the path format [1], we have that bisimulation ↔ is a congruence with
respect to all operators.

4 Axioms

To be able to calculate (more) easily, we introduce the following axiomatisation for the semantics
given in the previous section, which is proved to be sound and complete in the next two sections.
(Note that this axiomatisation does not include the use of process variables and thus completeness
only considers the semantics of process-closed terms.)

Definition 4.1. Let t, u ∈ TP . We can derive t to u, notation LoCo ` t
.= u, when this follows

from the rules and axioms below. Usually we just write t
.= u. The following rules hold for .= (with

t, u, v ∈ TP , x ∈ VP , ? a unary process operator and ◦ a binary process operator).

t
.= t

t
.= u

u
.= t

t
.= u, u

.= v

t
.= v

t
.= u

? (t) .= ?(u)

t
.= t′, u

.= u′

t ◦ u
.= t′ ◦ u′

t
.= u

t[v/x] .= u[v/x]

∀x∈VP
(∀v∈Tpc

(t[v/x] .= u[v/x]))

t
.= u

Our axiomatisation is the following:

MA1 a
.= 〈a〉 VD ∇V (δ) .= δ

MA2 τ
.= 〈〉 V 1 ∇V (α) .= α if [[α]] ∈ [[V ]] ∪ {[]}

MA3 〈−→a ,
−→
b 〉 .= 〈

−→
b ,−→a 〉 V 2 ∇V (α) .= δ if [[α]] 6∈ [[V ]] ∪ {[]}

V 3 ∇V (x + y) .= ∇V (x) +∇V (y)
A1 x + y

.= y + x V 4 ∇V (x · y) .= ∇V (x) · ∇V (y)
A2 x + (y + z) .= (x + y) + z
A3 x + x

.= x DD ∂H(δ) .= δ
A4 (x + y) · z .= x · z + y · z D1 ∂H(α) .= α if [[α]] ∩ [[H]] = ∅
A5 (x · y) · z .= x · (y · z) D2 ∂H(α) .= δ if [[α]] ∩ [[H]] 6= ∅
A6 x + δ

.= x D3 ∂H(x + y) .= ∂H(x) + ∂H(y)
A7 δ · x .= δ D4 ∂H(x · y) .= ∂H(x) · ∂H(y)

CM 1 x ‖ y
.= x ‖ y + y ‖ x + x|y TID τI(δ)

.= δ
CM 2 α ‖ x

.=α·x TI 1 τI(α) .= β with [[β]] = θ([[α]], I)
CM 3 α·x ‖ y

.=α·(x ‖ y) TI 3 τI(x + y) .= τI(x) + τI(y)
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CM 4 (x + y) ‖ z
.= x ‖ z + y ‖ z TI 4 τI(x · y) .= τI(x) · τI(y)

CM 5 α·x|β .= (α|β) · x
CM 6 α|β·x .= (α|β) · x RD ρR(δ) .= δ
CM 7 α·x|β·y .= (α|β) · (x ‖ y) R1 ρR(α) .= β with [[β]] = [[R]] • [[α]]
CM 8 (x + y)|z .= x|z + y|z R3 ρR(x + y) .= ρR(x) + ρR(y)
CM 9 x|(y + z) .= x|y + x|z R4 ρR(x · y) .= ρR(x) · ρR(y)
CM 10 〈−→a 〉|〈

−→
b 〉 .= 〈−→a ,

−→
b 〉

GD ΓC(δ) .= δ
CD1 δ|α .= δ G1 ΓC(α) .= β with [[β]] = γ([[α]], [[C]])
CD2 α|δ .= δ G3 ΓC(x + y) .= ΓC(x) + ΓC(y)

G4 ΓC(x · y) .= ΓC(x) · ΓC(y)

With a, b ∈ A, α, β ∈ A, α,β∈ A ∪ {δ}, x, y ∈ VP and p, q ∈ Tpc.

Table 2: LoCo Axioms

When we do wish to use recursive processes, we will (at least) need some extension to the .= defined
above and also RDP− and RSP [2] like principles. We informally define them as follows.

Definition 4.2. We extend .= with the following rule:

X = t ∈ E

X
.= t

Definition 4.3. We call a specification guarded if every occurrence of a process variable on the right
hand side of an equation is preceded by at least one action (possibly after substitution).

Definition 4.4. A solution of a specification X = t is a process p, such that p
.= t[p/X] holds, where

t[p/X] is t with all occurrences of X replaced by p.

Definition 4.5. The Restricted Recursive Definition Principle (RDP ) states that every guarded
specification has a solution.

Definition 4.6. The Recursive Specification Principle (RSP ) states that every guarded specification
has at most one solution.

5 Soundness of the axioms

The soundness of the axiomatisation in the previous section is stated in the following theorem.

Theorem 5.1. Let p, q ∈ Tpc. The axiomatisation of LoCo is sound (i.e. LoCo ` p
.= q ⇒ LoCo

� p↔q).

Proof 5.1. In Appendix A the soundness of the axioms given above has been proved (one axiom
per subsection). The structure of each of these proofs is the same, namely:

• A relation R is given for the axiom. For an axiom t
.= u, the relation R is the minimal relation

that satisfies tRu ∧ pRp ∧ (qRr ⇔ rRq) ∧ E, for all p, q, r ∈ Tpc and for all instantiations of
process variables in t and u. E is true, unless it is explicitly defined otherwise in the subsection.

• For each conjunct of the definition of R it is shown that the properties that define a bisimulation
hold.
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It is clear that if this is done, R is proven to be a bisimulation relation.
To shorten the proofs and get rid of trivial facts, that would otherwise be repeated in every sub-

section, we do not define R explicitly (as it is always of the form given above) or prove the conjuncts
pRp and qRr ⇔ rRq (and E, if it is true). The proofs of these conjuncts are trivial and therefore not
given at all.

When we say a process cannot terminate in any of the subsections, we mean that there is no m for
which m−→ X holds for that process. (So it could very well be that the process can indeed terminate,
but not in one “step”.) 2

Note that we should also prove the given rules of .=, but as these are quite straightforward (with, for
example, the symmetry of ↔ and the fact that ↔ is a congruence) they are not given.

6 Completeness

To prove that our axiomatisation is complete (i.e. that whenever two processes p and q are bisimilar we
know that p

.= q) we introduce basic terms and show that any (process-closed) term can be rewritten
to such a basic term. By doing this, the actual completeness proof only has to consider these basic
terms.

Note that we often say that something holds “by induction”, with which we mean to say that it
follows from the (implicit) induction hypothesis.

6.1 Basic terms

Definition 6.1. Let p, q, r ∈ Tpc and let α ∈ A ∪ {δ}. A basic term p is a term having one of the
following forms:

• α

• α · q, with q a basic term

• q + r, with q and r basic terms

Definition 6.2. We call the operators that can occur in basic terms (·, +) basic operators.

Theorem 6.3. Let p, q ∈ Tpc. For each p, which uses only basic operators, there exists a basic term
q with p

.= q.

Proof 6.3. We use induction on the structure of p:

• p = a, which means that p = a
.= 〈a〉.

• p = α, which already is a basic term.

• p = δ, which already is a basic term.

• p = τ , which means that p = τ
.= 〈〉.

• p = q + r, which means that by induction we have basic terms q′ and r′ with q
.= q′ ∧ r

.= r′,
and p = q + r

.= q′ + r′.

• p = q · r, which means that by induction we have basic terms q′ and r′ with q
.= q′ ∧ r

.= r′. We
now prove that for each basic term s there is a basic term t with t

.= s · r, which means that
there is a basic term p′ with p = q · r .= q′ · r .= p′. By the structure of s:

• α, which means that s · r = α · r .= α · r′, or
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• α · s′, with s′ a basic term, which means that s · r = (α · s′) · r .= α · (s′ · r) .= α · u, with
basic term u

.= s′ · r by induction, or

• s′+s′′, with s′ and s′′ basic terms, which means that s·r = (s′+s′′)·r .= s′ ·r+s′′ ·r .= u+u′,
with basic terms u

.= s′ · r and u′
.= s′′ · r by induction.

2

Lemma 6.4. Let p, q ∈ Tpc. If there are only basic operators in p and q, then there is a term r ∈ Tpc

without non-basic operators, such that r
.= p ◦ q (for some non-basic binary operator ◦).

Proof 6.4. By Theorem 6.3 we know that there are basic terms p′ and q′ with p
.= p′ and q

.= q′. We
prove, by induction on the number of symbols in p′ and q′, that there is a term r′ without non-basic
operators, such that r′

.= p′ ◦ q′ and thus r′
.= p ◦ q.

• p′ ‖ q′, and p′ is of structure

• α, which means that r
.= p′ ‖ q′ = α ‖ q′

.= α · q′, or

• α · s, with s a basic term, which means that r
.= p′ ‖ q′ = (α · s) ‖ q′

.= α · (s ‖ q′) = α · s′,
with s′

.= s ‖ q′ a term without non-basic operators by induction, or

• s + s′, with s and s′ basic terms, which means that r
.= p′ ‖ q′ = (s + s′) ‖ q′

.= s ‖ q′ +
s′ ‖ q′ = t + t′, with t

.= s ‖ q′ and t′
.= s′ ‖ q′ terms without non-basic operators by

induction.

• p′|q′, and

• p′ = α ∧ q′ = α′, which means that r
.= p′|q′ = α|α′, with α and α′ actions or δ, which

means that α|α′ is an action or δ

• p′ = α · s∧ q′ = α′, with s a basic term, which means that r
.= p′|q′ = (α · s)|α′ .= (α|α′) · s,

with α and α′ actions or δ, which means that α|α′ is an action or δ

• p′ = α ∧ q′ = α′ · s, with s a basic term, which is symmetrical to the previous case

• p′ = α·s∧q′ = α′ ·s′, with s and s′ basic terms, which means that r
.= p′|q′ = (α·s)|(α′ ·s′) .=

(α|α′) · (s ‖ s′) = (α|α′) · t, with α and α′ actions or δ, which means that α|α′ is an action
or δ, and t

.= s ‖ s′ a term without non-basic operators by induction

• p′ = s+s′, with basic terms s and s′, which means that r
.= p′|q′ = (s+s′)|q′ .= s|q′+s′|q′ =

t + t′, with t
.= s|q′ and t′

.= s′|q′ terms without non-basic operators by induction

• q′ = s + s′, with basic terms s and s′, which is symmetrical to the previous case.

• p′ ‖ q′, which means that r
.= p′ ‖ q′

.= p′ ‖ q′ + q′ ‖ p′ + p′|q′ = s + t + u, with s
.= p′ ‖ q′,

t
.= q′ ‖ p′ and u

.= p′|q′ terms without non-basic operators by the previous cases.

• ∇V (p′), and p′ is of structure

• α, which means that r
.= ∇V (p′) .= ∇V (α), with ∇V (α) an action or δ, or

• α · s, with s a basic term, which means that r
.= ∇V (p′) = ∇V (α · s) .= ∇V (α) · ∇V (s) =

∇V (α) · s′, with ∇V (α) an action or δ and s′
.= ∇V (s) a term without non-basic operators

by induction, or

• s + s′, with s and s′ basic terms, which means that r
.= ∇V (p′) = ∇V (s + s′) .= ∇V (s) +

∇V (s′) = t + t′, with t
.= ∇V (s) and t′

.= ∇V (s′) terms without non-basic operators by
induction.

• τI(p′), which is similar to the previous case.
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• ρR(p′), which is similar to the previous case.

• ΓC(p′), which is similar to the previous case.

• ∂H(p′), which is similar to the previous case.

2

Theorem 6.5. Let p, q ∈ Tpc. The elimination theorem states that all non-basic operators (‖, ‖ , |,
∇V , ΓC , τI and ρR) can be eliminated. That is, for each term p there exists a term q with p

.= q and
q does only contain basic operators.

Proof 6.5. With induction on the number of symbols in p:

• p is an action, deadlock or tau, which means there are no non-basic operators in p.

• p = q ◦ r, with ◦ a basic operator, which means that we have terms q′ and r′ with q
.= q′ and

r
.= r′ which contain no non-basic operators by induction and thus p = q ◦ r

.= q′ ◦ r′ does not
as well.

• p = ?(q), with ? a non-basic unary operator, which means that we have a term q′ with q
.= q′

which contains no non-basic operators by induction and thus p = ?(q) .= ?(q′) .= r, with r a
term without non-basic operators by Lemma 6.4.

• p = q◦r, with ◦ a non-basic binary operator, which means that we have terms q′ and r′ with q
.= q′

and r
.= r′ which contain no non-basic operators by induction and thus p = q ◦ r

.= q′ ◦ r′
.= s,

with s a term without non-basic operators by Lemma 6.4.

2

Theorem 6.6. Let p, q ∈ Tpr. For each p there exists a basic term q with p
.= q.

Proof 6.6. By Theorem 6.5 we know there exists a r, with p
.= r, in which no non-basic operators

occur. And Theorem 6.3 states that for such a term there is a basic term q with r
.= q. Thus, as

p
.= r

.= q, there is a basic term for each process-closed term p. 2

6.2 Completeness

Before we can prove completeness we need the following definitions and lemmas. Note that we use
standard predicate calculus (with ≡,⇒,∧,∨,¬,∀,∃) to define, derive and prove. This means we
consider p↔q and p

.= q to be predicates on p and q and will write derivations like p
.= α+α ≡ p

.= α,
for some p ∈ Tpc.

Definition 6.7. Let p, q ∈ Tpc. The bisimulation inclusion → of a bisimulation ↔ is defined by
p→ q ≡ p + q↔q.

Lemma 6.8. We can formulate the definition of → as follows:

p→ q ≡ ∀α∈B(A)((p
α−→ X ⇒ q

α−→ X) ∧ ∀p′(p
α−→p′ ⇒ ∃q′(q

α−→q′ ∧ p′↔q′)))

Proof 6.8. With the definition of ↔ in the more formal form of p↔q ≡ ∀α∈B(A)((p
α−→ X ⇒

q
α−→ X)∧(q α−→ X ⇒ p

α−→ X)∧∀p′(p
α−→p′ ⇒ ∃q′(q

α−→q′∧p′↔q′))∧∀q′(q
α−→q′ ⇒ ∃p′(p

α−→p′∧p′↔q′)))
the proof is as follows:
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p→ q
≡ p + q↔q

≡ ∀α∈B(A)((p + q
α−→ X ⇒ q

α−→ X) ∧ (q α−→ X ⇒ p + q
α−→ X)∧

∀p′(p + q
α−→p′ ⇒ ∃q′(q

α−→q′ ∧ p′↔q′)) ∧ ∀q′(q
α−→q′ ⇒ ∃p′(p + q

α−→p′ ∧ p′↔q′)))
≡ ∀α∈B(A)(((p

α−→ X ⇒ q
α−→ X) ∧ (q α−→ X ⇒ q

α−→ X)) ∧ true∧
∀p′((p

α−→p′ ⇒ ∃q′(q
α−→q′ ∧ p′↔q′)) ∧ (q α−→p′ ⇒ ∃q′(q

α−→q′ ∧ p′↔q′))) ∧ true)
≡ ∀α∈B(A)(((p

α−→ X ⇒ q
α−→ X) ∧ true) ∧ ∀p′((p

α−→p′ ⇒ ∃q′(q
α−→q′ ∧ p′↔q′)) ∧ true))

≡ ∀α∈B(A)((p
α−→ X ⇒ q

α−→ X) ∧ ∀p′(p
α−→p′ ⇒ ∃q′(q

α−→q′ ∧ p′↔q′)))

2

Definition 6.9. Let p, q ∈ Tpc. The axiomatic inclusion 6̇ of an axiomatic relation .= is defined by
p 6̇ q ≡ p + q

.= q.

Lemma 6.10. An axiomatic inclusion 6̇ is sound with respect to a bisimulation inclusion → if .=
is sound with respect to ↔ (i.e. ∀p,q(p

.= q ⇒ p↔q) ⇒ ∀p,q(p 6̇ q ⇒ p→ q)).

Proof 6.10. Trivial. 2

Lemma 6.11. Let p, q ∈ Tpc. The relation 6̇ is antisymmetric:

p
.= q ≡ p 6̇ q ∧ q 6̇ p

Proof 6.11.

p 6̇ q ∧ q 6̇ p
≡ p + q

.= q ∧ q + p
.= p

≡ q
.= p + q ∧ p + q

.= p
⇒ p

.= q

p
.= q

≡ p
.= q ∧ p

.= q
≡ p

.= q ∧ p + p
.= q ∧ q

.= p
≡ p

.= q ∧ p + q
.= q ∧ q + q

.= p
≡ p

.= q ∧ p 6̇ q ∧ q + p
.= p

⇒ p 6̇ q ∧ q 6̇ p

2

Lemma 6.12. Let p, q, r ∈ Tpc. The axiomatic inclusion distributes over the alternative composition
as follows:

p + q 6̇ r ≡ p 6̇ r ∧ q 6̇ r

Proof 6.12.

p + q 6̇ r
≡ p + q + r

.= r
≡ p + q + r

.= r ∧ p + q + r
.= r

≡ p + q + r
.= r ∧ p + q + r

.= r ∧ p + q + q + r
.= r

≡ p + q + r
.= r ∧ p + p + q + r

.= r ∧ q + p + q + r
.= r

⇒ p + r
.= r ∧ q + r

.= r
≡ p 6̇ r ∧ q 6̇ r

p 6̇ r ∧ q 6̇ r
≡ p + r

.= r ∧ q + r
.= r

⇒ p + q + r
.= r

≡ p + q 6̇ r

2

We write # : Tpc → N for the number of (process) symbols in a term. Its definition is quite straight-
forward and will therefore not be given in an other way than saying that every symbol (operator or
(in)action) is counted. Note that this does not include data operators or constants.

Lemma 6.13. Let p, q, q′, r, s ∈ Tpc and A be complete and have equality and quantifier elimination.
We can split p in smaller (or equally large) pieces if p→ q + q′, as expressed by the following:
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p→ q + q′ ⇒ ∃r,s(p
.= r + s ∧#(r) ≤ #(p) ∧#(s) ≤ #(p) ∧ r → q ∧ s→ q′)

Proof 6.13. With induction on the structure of p:

• p = α, which means that

• p = δ and thus p = δ
.= δ + δ, or

• p
[[α]]−→ X and thus q + q′

[[α]]−→ X and q
[[α]]−→ X ∨ q′

[[α]]−→ X; if q
[[α]]−→ X then we say r = α and

otherwise r = δ and the same for q′ and s; then p = α
.= r + s (with trivially r → q and

s→ q′)

• p = α · r, which is similar to the previous case

• p = r + r′

p→ q + q′

≡ r + r′→ q + q′

≡ r → q + q′ ∧ r′→ q + q′

≡ ∃s,t(r
.= s + t ∧#(s) ≤ #(r) ∧#(t) ≤ #(r) ∧ s→ q ∧ t→ q′)∧

∃s′,t′(r′
.= s′ + t′ ∧#(s′) ≤ #(r′) ∧#(t′) ≤ #(r′) ∧ s′→ q ∧ t′→ q′)

≡ ∃s,s′,t,t′(r
.= s + t ∧#(s) ≤ #(r) ∧#(t) ≤ #(r) ∧ s→ q ∧ t→ q′∧

r′
.= s′ + t′ ∧#(s′) ≤ #(r′) ∧#(t′) ≤ #(r′) ∧ s′→ q ∧ t′→ q′)

⇒ ∃s,s′,t,t′(r + r′
.= s + t + s′ + t′ ∧#(s + s′) ≤ #(r + r′) ∧#(t + t′) ≤ #(r + r′)∧

s + s′→ q ∧ t + t′→ q′)
⇒ ∃s,t(p

.= s + t ∧#(s) ≤ #(p) ∧#(t) ≤ #(p) ∧ s→ q ∧ t→ q′)

2

Lemma 6.14. Let α, β ∈ A and m ∈ B(A). The following holds:

α
m−→ X ∧ β

m−→ X ⇒ α
.= β

Proof 6.14. With induction on α:

• α = 〈〉, which means that m = [[α]] = [[〈〉]] = [] and thus [[β]] = [] which implies β = 〈〉, or

• α = 〈a,
−→
b 〉, with a ∈ A and 〈

−→
b 〉 ∈ A, which means that m = [[α]] = [[〈a,

−→
b 〉]] = [a,

−→
b ] and

[[β]] = [a,
−→
b ] and thus β = 〈−→c , a,

−→
d 〉, with 〈−→c 〉, 〈

−→
d 〉 ∈ A and [

−→
b ] = [−→c ,

−→
d ], which means that

β = 〈−→c , a,
−→
d 〉 .= 〈a,

−→
d ,−→c 〉 .= 〈a〉|〈

−→
d ,−→c 〉 .= 〈a〉|〈

−→
b 〉 .= 〈a,

−→
b 〉 = α, with 〈

−→
b 〉 .= 〈

−→
d ,−→c 〉 by

induction.

2

Lemma 6.15. Let α ∈ A and β ∈ A ∪ {δ}. The following holds:

α→ β ⇒ α
.= β

Proof 6.15. Because α ∈ A we have α
[[α]]−→ X and if α → β also β

[[α]]−→ X (by Lemma 6.8). Then
α

.= β follows from Lemma 6.14. 2

Lemma 6.16. Let α ∈ A, β ∈ A ∪ {δ} and p, q ∈ Tpc. The following holds:

α · p→ β · q ⇒ α
.= β ∧ p↔q
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Proof 6.16. Because α ∈ A we have α · p [[α]]−→p and if α→ β also β · q [[α]]−→q ∧ p↔q (by Lemma 6.8).

Then, because also α
[[α]]−→ X and β

[[α]]−→ X, α
.= β follows from Lemma 6.14. 2

Theorem 6.17. Let p, q ∈ Tpc. LoCo is complete (i.e. LoCo � p↔q ⇒ LoCo ` p
.= q).

Proof 6.17. Given p↔q, we need to show that p
.= q. As there are basic terms p′ and q′ with

p
.= p′ ∧ q

.= q′ (and, because .= is sound, p↔p′ ∧ q↔q′), it is sufficient to show that p′
.= q′. We

do this by proving that p′ → q′ ⇒ p′ 6̇ q′ and q′ → p′ ⇒ q′ 6̇ p′. From this obviously follows
p↔q ≡ p′↔q′ ≡ p′→ q′ ∧ q′→ p′ ⇒ p′ 6̇ q′ ∧ q′ 6̇ p′ ≡ p′

.= q′.
We now prove p′→ q′ ⇒ p′ 6̇ q′ with induction on the number of symbols in p′ and q′:

• p′ = α, which means that p′ = δ and thus p′ = δ 6̇ q′ or p′ 6= δ and then by induction on q′

• q′ = β, which means that α 6̇ β because of p′→ q′ (by Lemma 6.15), or
• q′ = β · r, with basic term r, which is not possible as q′ should be able to terminate, or
• q′ = r + r′, with basic terms r and r′, which means that, by Lemma 6.13, ∃s,s′(p′

.=
s + s′ ∧ #(s) ≤ #(p′) ∧ #(s′) ≤ #(p′) ∧ s → r ∧ s′ → r′) and by induction ∃s,s′(p′

.=
s + s′ ∧ s 6̇ r ∧ s′ 6̇ r′) ⇒ ∃s,s′(p′

.= s + s′ ∧ s 6̇ r + r′ ∧ s′ 6̇ r + r′) ⇒ ∃s,s′(p′
.=

s + s′ ∧ s + s′ 6̇ r + r′) ⇒ p′ 6̇ r + r′ = q′.

• p′ = α · r, with basic term r, which means that p′ = δ · r and thus p′ = δ · r .= δ 6̇ q′ or p′ 6= δ · r
and then by induction on q′

• q′ = β, which is not possible as q′ can only terminate (and p′ cannot), or
• q′ = β · s, which means that α

.= β ∧ r↔s because of p′ → q′ (by Lemma 6.16) and thus
r6̇ s∧s6̇ r by induction (with r↔s ≡ r→ s∧s→ r) and α·r .= α·(s+r) .= β ·(r+s) .= β ·s,
or

• q′ = s + s′, with basic terms s and s′, which means that, by Lemma 6.13, ∃t,t′(p′
.=

t + t′ ∧ #(t) ≤ #(p′) ∧ #(t′) ≤ #(p′) ∧ t → s ∧ t′ → s′) and by induction ∃t,t′(p′
.=

t + t′ ∧ t 6̇ s ∧ t′ 6̇ s′) ⇒ ∃t,t′(p′
.= t + t′ ∧ t 6̇ s + s′ ∧ t′ 6̇ s + s′) ⇒ ∃t,t′(p′

.=
t + t′ ∧ t + t′ 6̇ s + s′) ⇒ p′ 6̇ s + s′ = q′.

• p′ = r+r′, with basic terms r and r′, which means that p′→ q′ ≡ r+r′→ q′ ≡ r→ q′∧r′→ q′
IH≡

r 6̇ q′ ∧ r′ 6̇ q′ ≡ r + r′ 6̇ q′ ≡ p′ 6̇ q′.

The proof of q′→ p′ ⇒ q′ 6̇ p′ is symmetrical to the proof above. 2

7 Abstraction

If we want τ (or 〈〉) to be a “real” silent step, we want to be able to remove τ where its presence
can not be determined. Our current definition of bisimulation therefore no longer suits us and we
therefore introduce another form of bisimulation.

We use rooted branching bisimulation ↔rb and, as our semantics fits the “RBB cool” format [3], we
know ↔rb is a congruence. To be able to give a nice definition we introduce a termination predicate
↓ and assume that X is a state (but not an allowed process constant) and that it is the only state for
which ↓ holds (i.e. x

m−→ X now just means that x can make a transition m to X and X terminates).

Definition 7.1. Let SemLoCo(E) = 〈TP , B(A),−→,−→ X〉, with E a set of process expressions
and −→ and −→ X the transition relations on processes TP with multiactions B(A), be a process
semantics. Also, let t,t′,u and u′ be process terms in which process variables may occur only if they
are in E and m ∈ B(A). Branching bisimulation ↔b is the union of all relations B such that if tBu

(with m∗

−→ zero or more m-transitions):
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• for all t′ and m, t
m−→t′ means that m = [] ∧ t′Bu or there exist u′ and u′′ with u

[]∗−→u′′
m−→u′ ∧

tBu′′ ∧ t′Bu′

• for all u′ and m, u
m−→u′ means that m = [] ∧ tBu′ or there exist t′ and t′′ with t

[]∗−→t′′
m−→t′ ∧

t′′Bu ∧ t′Bu′

• t ↓ means that there exists a u′ with u
[]∗−→u′ ↓ ∧tBu′

• u ↓ means that there exists a u′ with t
[]∗−→t′ ↓ ∧t′Bu

Definition 7.2. Let SemLoCo(E) = 〈TP , B(A),−→,−→ X〉, with E a set of process expressions
and −→ and −→ X the transition relations on processes TP with multiactions B(A), be a process
semantics. Also, let t,t′,u and u′ be process terms in which process variables may occur only if they
are in E and m ∈ B(A). Rooted branching bisimulation ↔rb is defined by t↔rbu if, and only if,
t↔bu ∧ rooted(t, u), with rooted(t, u) defined as follows:

• if t
m−→t′, then u

m−→u′ ∧ t′↔bu
′

• if u
m−→u′, then t

m−→t′ ∧ t′↔bu
′

• if t ↓, then u ↓

• if u ↓, then t ↓

Now we have this new form of equivalence, we also need a matching (i.e. sound and complete) ax-
iomatisation. Fortunately, the axioms given before are still sound, but to make the axiomatisation
(relatively) complete again (i.e. to have axioms that reflect the behaviour of τ) we believe it is suffi-
cient to add the following two axioms, as in [4]. (Note that x, y and z cannot be X).

T1 x · τ .= x
T2 x · (τ · (y + z) + y) .= x · (y + z)

In Appendix B we have proved the soundness of the axioms T1 and T2. The other axioms of
LoCo , which have already been proven to be sound with respect to ↔, do not need to be proven
again, as ↔ ⊂↔rb holds. The structure of the proofs of T1 and T2 is the same as before, but instead
of proving R to be a bisimulation we have proved R to be a branching bisimulation and rooted(t, u)
(for axiom t

.= u).

When working with abstraction, one might encounter processes of the following form: X = i ·X + Y ,
where one wishes to hide i. This process can in fact do an infinite amount of i’s, but, after hiding,
these actions should not be observable. One usually wishes to have some form of fairness in which an
infinite sequence of τ ’s is not possible. To express this we introduce a fairness rule.

In current algebras, like ACP, there exist rules as “KFAR” and “CFAR” [2]. Although these rules
basically express the same fairness as we wish to express and fit in our own language, they need that
the (recursive) specification is linearised (before the application of the abstraction operator τI).

Instead we wish to see if it is possible to first apply the abstraction and afterwards apply some
form of fairness rule to the (possibly, or even probably) reduced specification. The proposition of the
basic idea follows. It is clear that if this rule is suitable, we can extend it to a more general rule (as
“CFAR”).

Proposition 7.3. The fairness rule we propose is the following:

Y
.= τ{i}(Y ), X ′ .= i ·X ′ + Y, X

.= τ{i}(X ′)

τ ·X .= τ · Y
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This rule basically follows from KFAR, as shown in the following derivation:

Y
.= τ{i}(Y ), X ′ .= i ·X ′ + Y,X

.= τ{i}(X ′)

Y
.= τ{i}(Y ), τ · τ{i}(X ′) .= τ · τ{i}(Y ), X .= τ{i}(X ′)

τ ·X .= τ · Y

One might wonder why the X is defined as an abstraction of X ′ and not just as X = τ · X + Y .
The problem with this equation is that, for example, X = τ · a, Y = δ is a solution, but with the
abstraction of X ′ this is not the case. This does mean, however, that our wish to be able to simply
apply a fair abstraction rule to an abstracted specification is not possible, unless we know that the
variable in question satisfies the conditions of the above rule. Fortunately, this will be the case in
practice, as the abstracted specification is an abstraction of some specification. It should therefore be
save to use this rule as the following, if one knows the occurring τ is a result of abstraction:

X
.= τX + Y

τX
.= τY

8 Examples

8.1 Synchronising 1

Assume we have the following two processes A and B:

A = a · sa , B = sb · b

If these processes are running in parallel and we wish that they synchronise on the s actions, such
that a happens before b, we can write the following process:

S = ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(A ‖ B)))

By applying the axioms we can show that this process indeed does what we wished it did.

S = ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(A ‖ B)))
.= ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(A ‖ B + B ‖ A + A|B)))
.= ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(a · (sa ‖ B) + sb · (b ‖ A) + 〈a, sb〉 · (sa ‖ b))))
.= ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(a · (sa ‖ B))))+

∇{a,b}(τ{sab}(Γ{sa|sb→sab}(sb · (b ‖ A))))+
∇{a,b}(τ{sab}(Γ{sa|sb→sab}(〈a, sb〉 · (sa ‖ b))))

.= a · ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(sa ‖ B))) + δ + δ

.= a · ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(sa ‖ B + B ‖ sa + 〈sa, sb〉 · b))).= a · ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(sa ·B + sb · (b ‖ sa) + 〈sa, sb〉 · b))).= a · (∇{a,b}(τ{sab}(Γ{sa|sb→sab}(sa ·B)))+
∇{a,b}(τ{sab}(Γ{sa|sb→sab}(sb · (b ‖ sa))))+
∇{a,b}(τ{sab}(Γ{sa|sb→sab}(〈sa, sb〉 · b)))).= a · (δ + δ + τ · ∇{a,b}(τ{sab}(Γ{sa|sb→sab}(b)))).= a · τ · b

.= a · b

8.2 Synchronising 2

Assume we have three processes in parallel and we wish that they synchronise on an action tick. For
simplicity we use the following definition for the processes:

Pi = ticki · Pi
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tick 3

tick 2tick1

P1 P2

P3

Figure 1: Synchronising processes.

When putting three of these processes in parallel, we get the following behaviour:

P 3 = P0 ‖ P1 ‖ P2
.= P0 ‖ (P1 ‖ P2 + P2 ‖ P1 + P1|P2).= P0 ‖ (〈 tick1 〉 · (P1 ‖ P2) + (〈 tick2 〉 · (P1 ‖ P2) + 〈 tick1, tick2 〉 · (P1 ‖ P2))
.= P0 ‖ (〈 tick1 〉 · (P1 ‖ P2) + (〈 tick2 〉 · (P1 ‖ P2) + 〈 tick1, tick2 〉 · (P1 ‖ P2))+

(〈 tick1 〉 · (P1 ‖ P2) + (〈 tick2 〉 · (P1 ‖ P2) + 〈 tick1, tick2 〉 · (P1 ‖ P2)) ‖ P0+
P0|(〈 tick1 〉 · (P1 ‖ P2) + (〈 tick2 〉 · (P1 ‖ P2) + 〈 tick1, tick2 〉 · (P1 ‖ P2)).= 〈 tick0〉 · (P0 ‖ (〈 tick1〉 · (P1 ‖ P2) + (〈 tick2 〉 · (P1 ‖ P2) + 〈 tick1, tick2〉 · (P1 ‖ P2)))+
〈 tick1〉 · (P0 ‖ P1 ‖ P2) + 〈 tick2〉 · (P0 ‖ P1 ‖ P2) + 〈 tick1, tick2〉 · (P0 ‖ P1 ‖ P2)+
〈 tick0, tick1〉 · (P0 ‖ P1 ‖ P2) + 〈 tick0, tick2〉 · (P0 ‖ P1 ‖ P2) + 〈 tick0, tick1, tick2〉 · (P0 ‖ P1 ‖ P2).= 〈 tick0〉 · P 3 + 〈 tick1〉 · P 3 + 〈 tick2〉 · P 3+
〈 tick0, tick1〉 · P 3 + 〈 tick0, tick2〉 · P 3 + 〈 tick1, tick2〉 · P 3+
〈 tick0, tick1, tick2〉 · P 3

.= (〈 tick0〉+ 〈 tick1〉+ 〈 tick2〉+
〈 tick0, tick1〉+ 〈 tick0, tick2〉+ 〈 tick1, tick2〉+
〈 tick0, tick1, tick2〉) · P 3

As we can see, and as could have been expected, the three processes in parallel can do their ac-
tions separately or synchronously with one or two of the other processes. We stated before that we
wish to synchronise them all, so we will put a ∇V , with V = { tick0| tick1| tick2}, around P 3 so only
this multiaction in V may happen.

P 3
V = ∇V (P 3)

.= 〈 tick0, tick1, tick2〉 · ∇V (P 3)

.= 〈 tick0, tick1, tick2〉 · P 3
V

9 Alphabet axioms

As the linearisation of parallel expressions has the tendency to significantly increase the amount of
memory needed to store resulting expressions and often such expressions are enclosed by for instance
restriction operators, one wishes to be able to remove as much of the (sub)expressions as possible
before elimination of parallel operators. To help this process we give a list of alphabet axioms, which
can be used to easily push certain operators deeper into an expression to (partially) effectuate its
behaviour and possibly limiting the increase in memory needed for linearisation.

Definition 9.1. Let p, p′ ∈ Tpc and m ∈ B(A). We define the alphabet αν(p) of a process p by
(p m−→ X ⇒ µ(m) ∈ αν(p)) ∧ (p m−→p′ ⇒ {µ(m)} ∪ αν(p′) ⊆ αν(p)).
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Note that the above definition is in terms of the semantics. This suits us when proving soundness,
but during linearisation one probably wants an axiomatic definition. Although we do not give such
a definition here, we do want to note that in practice it is probably well acceptable to use an over-
approximation for αν (i.e. some α̃ν with ∀t(αν(t) ⊆ α̃ν(t))), as if the axioms presented below hold for
such an over-approximation, they will certainly hold for αν .

Definition 9.2. Let a, b ∈ NA, v, w ∈ B(NA) and V ⊆ B(NA). We define the set N (V ) of actions
in a set of bags V as follows:

N (V ) = {a | a ∈ v ∧ v ∈ V }

Definition 9.3. Let a, b ∈ B(NA) and V ⊆ B(NA). We define the set ⇓ (V ) of subbags of bags in
set V by ⇓(V ) = {b | a ∈ V ∧ b ⊆ a}.

Definition 9.4. Let S, T be sets and F : S → T . Also, let s ∈ S and t ∈ T . We define the dom(F )
and rng(F ) as follows:

dom(F ) = {s | ∃t∈T (〈s, t〉 ∈ F )}
rng(F ) = {t | ∃s∈S(〈s, t〉 ∈ F )}

Note we write S ∩ T and S ∪ T while we actually mean a (syntactic) set U such that [[U ]] = [[S]]∩ [[T ]]
or [[U ]] = [[S]] ∪ [[T ]] respectively.

With these definitions we have the following alphabet axioms:

VA1 ∇V (x) .= x if αν(x) ⊆ [[V ]]
VA2 ∇V (x) .= δ if [[V ]] ∩ αν(x) = ∅
VA3 ∇V (∇V ′(x)) .= ∇V ∩V ′(x)
VA4 ∇V (x ‖ y) .= ∇V (x ‖ ∇V ′(y)) if ⇓([[V ]]) ⊆ [[V ′]]

CA1 ΓC(x) .= x if dom([[C]])∩ ⇓(αν(x)) = ∅
CA2 ΓC(ΓC′(x)) .= ΓC∪C′(x) if N (dom([[C]])) ∩N (dom([[C ′]])) = ∅ ∧ N (dom([[C]])) ∩ rng([[C ′]]) = ∅
CA3 ΓC(x ‖ y) .= x ‖ ΓC(y) if ⇓(dom([[C]]))∩ ⇓(αν(x)) = ∅
CA4 ΓC(x ‖ y) .= ΓC(x ‖ ΓC(y)) if N (dom([[C]])) ∩ rng([[C]]) = ∅

DA1 ∂H(x) .= x if [[H]] ∩N (αν(x)) = ∅
DA2 ∂H(x) .= δ if ∀v∈αν(x)(v ∩ [[H]] 6= ∅)
DA3 ∂H(∂H′(x)) .= ∂H∪H′(x)
DA4 ∂H(x ‖ y) .= ∂H(x) ‖ ∂H(y)

TA1 τI(x) .= x if [[I]] ∩N (αν(x)) = ∅
TA3 τI(τI′(x)) .= τI∪I′(x)
TA4 τI(x ‖ y) .= τI(x) ‖ τI(y)

RA1 ρR(x) .= x if dom([[R]]) ∩N (αν(x)) = ∅
RA2 ρR(ρR′(x)) .= ρR∪R′(x) if dom([[R]]) ∩ dom([[R′]]) = ∅ ∧ dom([[R]]) ∩ rng([[R′]]) = ∅
RA3 ρR(ρR′(x)) .= ρR′′(x) if [[R′′]] = {〈a, b〉 | (〈a, b〉 ∈ [[R]] ∧ a 6∈ (dom([[R′]]) ∪ rng([[R′]])))∨

(〈c, b〉 ∈ [[R]] ∧ 〈a, c〉 ∈ [[R′]])∨
(〈a, b〉 ∈ [[R′]] ∧ b 6∈ dom([[R]]))}

RA4 ρR(x ‖ y) .= ρR(x) ‖ ρR(y)

VC1 ∇V (ΓC(x)) .= ∇V (ΓC(∇V ′(x))) if [[V ′]] = {v ⊕ w | γ(v, [[C]])⊕ w ∈ [[V ]]}
VC2 ΓC(∇V (x)) .= ∇V (x) if dom(C)∩ ⇓(V ) = ∅
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VD1 ∇V (∂H(x)) .= ∂H(∇V (x))
VD2 ∇V (∂H(x)) .= ∇V ′(x) if [[V ′]] = {v | v ∈ [[V ]] ∧N ({v}) ∩ [[H]] = ∅}
VD3 ∂H(∇V (x)) .= ∇V ′(x) if [[V ′]] = {v | v ∈ [[V ]] ∧N ({v}) ∩ [[H]] = ∅}
VT ∇V (τI(x)) .= τI(∇V ′(x)) if [[V ′]] = {v | θ(v, [[I]]) ∈ [[V ]]}
VR ∇V (ρR(x)) .= ρR(∇V ′(x)) if [[V ′]] = {v | ([[R]] • v) ∈ [[V ]]}
CD1 ∂H(ΓC(x)) .= ΓC(∂H(x)) if (N (dom(C)) ∪ rng(C)) ∩H = ∅
CD2 ΓC(∂H(x)) .= ∂H(x) if N (dom(C)) ⊆ H
CT1 τI(ΓC(x)) .= ΓC(τI(x)) if (N (dom(C)) ∪ rng(C)) ∩ I = ∅
CT2 ΓC(τI(x)) .= τI(x) if N (dom(C)) ⊆ I
CR1 ρR(ΓC(x)) .= ΓC(ρR(x)) if dom(R) ∩ rng(C) = dom(R) ∩N (dom(C)) = rng(R) ∩N (dom(C)) = ∅
CR2 ΓC(ρR(x)) .= ρR(x) if N (dom(C)) ⊆ dom(R) ∧N (dom(C)) ∩ rng(R) = ∅
DT ∂H(τI(x)) .= τI(∂H(x)) if [[I]] ∩ [[H]] = ∅
DR ∂H(ρR(x)) .= ρR(∂H′(x)) if [[H ′]] = {v | ([[R]] • v) ∈ [[H]]}
TR τI(ρR(x)) .= ρR(τI′(x)) if [[I]] = {[[R]]+(a) | a ∈ [[I ′]]}

Table 3: LoCo Alphabet Axioms

Theorem 9.5. All alphabet axioms are sound, i.e. for all axioms t
.= u and condition C in Table 3

it holds that for all processes p and q in Tpc, where p and q are instantiations of t and u, respectively,
such that C holds, C ∧ LoCo ` p

.= q ⇒ LoCo � p↔q

Proof 9.5. To prove the soundness of these alphabet axioms, we use a different approach as before,
except for the axioms containing a parallel operator. As the operators used in these axioms are all
defined in a similar way, namely:

x
m−→ X

O(x)
f(m)−→ X

C(m)
x

m−→x′

O(x)
f(m)−→O(x′)

C(m)

If we now wish to prove an axiom O1(. . . On(x) . . .) .= On+1(. . . On′(x) . . .), we get the following:

• O1(. . . On(x) . . .) m−→ X, which means that O2(. . . On(x) . . .) m1−→ X ∧ C1(m1) ∧ m = f1(m1)
∧ . . . ∧ x

mn−→ X∧Cn(mn)∧mn−1 = fn(mn) and therefore Cn+1(mn)∧. . .∧Cn′(fn′−1(. . . fn+1(mn) . . .))
and m = f ′n(. . . fn+1(mn) . . .) and On+1(. . . On′(x) . . .) m−→ X

• Etc.

So what really has to be proven is that for each m, such that x
m−→ X∨x

m−→x′, it holds that Cn(m)∧
. . .∧C1(f2(. . . fn(m))) ≡ Cn′(m)∧ . . .∧Cn+1(fn+2(. . . fn′(m))) and Cn(m)∧ . . .∧C1(f2(. . . fn(m))) ⇒
f1(. . . fn(m)) = fn+1(. . . fn′(m)).

The proofs for the alphabet axioms are given in Appendix C. 2



20 A SOUNDNESS PROOFS

A Soundness proofs

The structure of each of these proofs is the same, namely:

• A relation R is given for the axiom. For an axiom t
.= u, the relation R is the minimal relation

that satisfies tRu ∧ pRp ∧ (qRr ⇔ rRq) ∧ E, for all p, q, r ∈ Tpc and for all instantiations of
process variables in t and u. E is true, unless it is explicitly defined otherwise in the subsection.

• For each conjunct of the definition of R it is shown that the properties that define a bisimulation
hold.

It is clear that if this is done, R is proven to be a bisimulation relation.
To shorten the proofs and get rid of trivial facts, that would otherwise be repeated in every sub-

section, we do not define R explicitly (as it is always of the form given above) or prove the conjuncts
pRp and qRr ⇔ rRq (and E, if it is true). The proofs of these conjuncts are trivial and therefore not
given at all.

When we say a process cannot terminate in any of the subsections, we mean that there is no m for
which m−→ X holds for that process. (So it could very well be that the process can indeed terminate,
but not in one “step”.)

A.1 MA1 a
.
= 〈a〉

• a
m−→ X, which means that m = [a] and 〈a〉 [a]−→ X

• 〈a〉 m−→ X, which is the same as the previous case

• a
m−→p, which is not possible

• 〈a〉 m−→p, which is not possible

A.2 MA2 τ
.
= 〈〉

This proof is similar to that of axiom MA2 with m = [].

A.3 MA3 〈−→a ,
−→
b 〉 .

= 〈
−→
b ,−→a 〉

Both 〈−→a ,
−→
b 〉 and 〈

−→
b ,−→a 〉 cannot do any transition. They can only terminate with [[〈−→a ,

−→
b 〉]] and

[[〈
−→
b ,−→a 〉]] resp., which are equal.

A.4 A1 x + y
.
= y + x

• p + q
m−→ X, which means that

• p
m−→ X, which means that q + p

m−→ X, or

• q
m−→ X, which means that q + p

m−→ X

• q + p
m−→ X, symmetrical to the prove above

• p + q
m−→r, which means that

• p
m−→r, which means that q + p

m−→r, with rRr, or

• q
m−→r, which means that q + p

m−→r, with rRr

• q + p
m−→r, symmetrical to the prove above
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A.5 A2 x + (y + z)
.
= (x + y) + z

• p + (q + r) m−→ X, which means that

• p
m−→ X, which means that p + q

m−→ X and (p + q) + r
m−→ X, or

• q + r
m−→ X, which means that

• q
m−→ X, which means that p + q

m−→ X and (p + q) + r
m−→ X, or

• r
m−→ X, which means that (p + q) + p

m−→ X

• (p + q) + r
m−→ X, symmetrical to the prove above

• p + (q + r) m−→r′, which means that

• p
m−→r′, which means that p + q

m−→r′ and (p + q) + r
m−→r′, with r′Rr′, or

• q + r
m−→r′, which means that

• q
m−→r′, which means that p + q

m−→r′ and (p + q) + r
m−→r′, with r′Rr′, or

• r
m−→r′, which means that (p + q) + r

m−→r′, with r′Rr′

• (p + q) + r
m−→r′, symmetrical to the prove above

A.6 A3 x + x
.
= x

• p + p
m−→ X, which means that p

m−→ X

• p
m−→ X, which means that p + p

m−→ X

• p + p
m−→p′, which means that p

m−→p′, with p′Rp′

• p
m−→p′, which means that p + p

m−→p′, with p′Rp′

A.7 A4 (x + y) · z .
= x · z + y · z

• (p + q) · r m−→ X, which is not possible

• p · r + q · r m−→ X, which means that

• p · r m−→ X, which is not possible, or

• q · r m−→ X, which is not possible

• (p + q) · r m−→r′, which means that

• p + q
m−→ X ∧ r′ = r, which means that

• p
m−→ X, which means that p · r m−→r and p · r + q · r m−→r, with r′Rr, or

• q
m−→ X, which means that q · r m−→r and p · r + q · r m−→r, with r′Rr, or

• p + q
m−→q′ ∧ r′ = q′ · r which means that

• p
m−→q′, which means that p · r m−→q′ · r and p · r + q · r m−→q′ · r, with r′Rq′ · r, or

• q
m−→q′, which means that q · r m−→q′ · r and p · r + q · r m−→q′ · r, with r′Rq′ · r

• p · r + q · r m−→r′, which means that

• p · r m−→r′, which means that

• p
m−→ X ∧ r′ = r, which means that p + q

m−→ X and (p + q) · r m−→r, with r′Rr, or
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• p
m−→p′ ∧ r′ = p′ · r, which means that p + q

m−→p′ and (p + q) · r m−→p′ · r, with r′Rp′ · r,
or

• q · r m−→r′, which means that

• q
m−→ X ∧ r′ = r, which means that p + q

m−→ X and (p + q) · r m−→r, with r′Rr, or

• q
m−→q′ ∧ r′ = q′ · r, which means that p + q

m−→q′ and (p + q) · r m−→q′ · r, with r′Rq′ · r

A.8 A5 (x · y) · z .
= x · (y · z)

• (p · q) · r m−→ X, which is not possible

• p · (q · r) m−→ X, which is not possible

• (p · q) · r m−→r′, which means that

• p · q m−→ X, which is not possible

• p · q m−→q′ ∧ r′ = q′ · r, which means that

• p
m−→ X ∧ q′ = q, which means that p · (q · r) m−→q · r, with r′Rq · r, or

• p
m−→p′ ∧ q′ = p′ · q, which means that p · (q · r) m−→p′ · (q · r), with r′R(p′ · q) · r

A.9 A6 x + δ
.
= x

• p + δ
m−→ X, which means that p

m−→ X

• p
m−→ X, which means that p + δ

m−→ X

• p + δ
m−→p′, which means that p

m−→p′, with p′Rp′

• p
m−→p′, which means that p + δ

m−→p′, with p′Rp′

A.10 A7 δ · x .
= δ

Both δ · p and δ cannot terminate or do any transition.

A.11 CM 1 x ‖ y
.
= x ‖ y + y ‖ x + x|y

We define E as p ‖ qRq ‖ p (for all p, q ∈ Tpc).

• p ‖ q
m−→ X, which means that p

n−→ X ∧ q
n′

−→ X ∧m = n⊕ n′ and p|q m−→ X and p ‖ q + q ‖ p +
p|q m−→ X

• p ‖ q + q ‖ p + p|q m−→ X, which means that

• p ‖ q
m−→ X, which is not possible, or

• q ‖ p
m−→ X, which is not possible, or

• p|q m−→ X, which means that p
n−→ X ∧ q

n′

−→ X ∧m = n⊕ n′ and p ‖ q
m−→ X

• p ‖ q
m−→r, which means that

• p
m−→ X ∧ r = q, which means that p ‖ q

m−→q and p ‖ q + q ‖ p + p|q m−→q, with rRq, or

• q
m−→ X ∧ r = p, which means that q ‖ p

m−→p and p ‖ q + q ‖ p + p|q m−→p, with rRp, or
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• p
m−→p′ ∧ r = p′ ‖ q, which means that p ‖ q

m−→p′ ‖ q and p ‖ q + q ‖ p + p|q m−→p′ ‖ q, with
rRp′ ‖ q, or

• q
m−→q′ ∧ r = p ‖ q′, which means that q ‖ p

m−→q′ ‖ p and p ‖ q + q ‖ p + p|q m−→q′ ‖ p, with
rRq′ ‖ p

• p ‖ q + q ‖ p + p|q m−→r, which means that

• p ‖ q
m−→r, which means that

• p
m−→ X ∧ r = q, which means that p ‖ q

m−→q, with rRq, or

• p
m−→p′ ∧ r = p′ ‖ q, which means that p ‖ q

m−→p′ ‖ q, with rRp′ ‖ q, or

• q ‖ p
m−→r, which means that

• q
m−→ X ∧ r = p, which means that p ‖ q

m−→p, with rRp, or

• q
m−→q′ ∧ r = q′ ‖ p, which means that p ‖ q

m−→p ‖ q′, with rRp ‖ q′, or

• p|q m−→r, which means that

• p
n−→p′ ∧ q

n′

−→q′ ∧ m = n ⊕ n′ ∧ r = p′ ‖ q′, which means that p ‖ q
m−→p′ ‖ q′, with

rRp′ ‖ q′, or

• p
n−→ X ∧ q

n′

−→q′ ∧m = n⊕ n′ ∧ r = q′, which means that p ‖ q
m−→q′, with rRq′, or

• p
n−→p′ ∧ q

n′

−→ X ∧m = n⊕ n′ ∧ r = p′, which means that p ‖ q
m−→p′, with rRp′

• p ‖ q
m−→ X, which means that p

n−→ X ∧ q
n′

−→ X ∧m = n⊕ n′ and q ‖ p
m−→ X

• q ‖ p
m−→ X, which is symmetrical to the proof above

• p ‖ q
m−→r, which means that

• p
m−→ X ∧ r = q, which means that q ‖ p

m−→q, with rRq, or

• q
m−→ X ∧ r = p, which means that q ‖ p

m−→p, with rRp, or

• p
m−→p′ ∧ r = p′ ‖ q, which means that q ‖ p

m−→q ‖ p′, with rRq ‖ p′, or

• q
m−→q′ ∧ r = p ‖ q′, which means that q ‖ p

m−→q′ ‖ p, with rRq′ ‖ p, or

• p
n−→ X ∧ q

n′

−→q′ ∧m = n⊕ n′ ∧ r = q′, which means that q ‖ p
m−→q′, with rRq′, or

• p
n−→p′ ∧ q

n′

−→ X ∧m = n⊕ n′ ∧ r = p′, which means that q ‖ p
m−→p′, with rRp′, or

• p
n−→p′∧q

n′

−→q′∧m = n⊕n′∧r = p′ ‖ q′, which means that q ‖ p
m−→q′ ‖ p′, with rRq′ ‖ p′,

or

• q ‖ p
m−→r, which is symmetrical to the proof above

A.12 CM 2 α ‖ x
.
=α·x

• Both α ‖ p and α·p can not terminate

• α ‖ p
m−→p′, which means that α

m−→ X ∧ p′ = p and α·p m−→p, with p′Rp

• α·p m−→p′, which means that α
m−→ X ∧ p′ = p and α ‖ p

m−→p, with p′Rp
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A.13 CM 3 α·x ‖ y
.
=α·(x ‖ y)

• Both α·p ‖ q and α·(p ‖ q) can not terminate

• α·p ‖ q
m−→q′, which means that α·p m−→p′∧q′ = p′ ‖ q and α

m−→ X∧p′ = p and α·(p ‖ q) m−→p ‖ q,
with q′Rp ‖ q

• α·(p ‖ q) m−→q′, which means that α
m−→ X ∧ q′ = p ‖ q and α·p m−→p and α·p ‖ q

m−→p ‖ q, with
q′Rp ‖ q

A.14 CM 4 (x + y) ‖ z
.
= x ‖ z + y ‖ z

• (p + q) ‖ r can not terminate

• p ‖ r + q ‖ r can not terminate as

• p ‖ r can not terminate and

• q ‖ r can not terminate

• (p + q) ‖ r
m−→r′, which means that

• p + q
m−→ X ∧ r′ = r, which means that

• p
m−→ X, which means that p ‖ r

m−→r and p ‖ r + q ‖ r
m−→r, with r′Rr, or

• q
m−→ X, which means that q ‖ r

m−→r and p ‖ r + q ‖ r
m−→r, with r′Rr, or

• p + q
m−→q′ ∧ r′ = q′ ‖ r, which means that

• p
m−→q′, which means that p ‖ r

m−→q′ ‖ r and p ‖ r + q ‖ r
m−→q′ ‖ r, with r′Rq′ ‖ r, or

• q
m−→q′, which means that q ‖ r

m−→q′ ‖ r and p ‖ r + q ‖ r
m−→q′ ‖ r, with r′Rq′ ‖ r

• p ‖ r + q ‖ r
m−→r′, which means that

• p ‖ r
m−→r′, which means that

• p
m−→ X ∧ r′ = r, which means that p + q

m−→ X and (p + q) ‖ r
m−→r, with r′Rr, or

• p
m−→p′ ∧ r′ = p′ ‖ r, which means that p + q

m−→p′ and (p + q) ‖ r
m−→p′ ‖ r, with

r′Rp′ ‖ r, or

• q ‖ r
m−→r′, which means that

• q
m−→ X ∧ r′ = r, which means that p + q

m−→ X and (p + q) ‖ r
m−→r, with r′Rr, or

• q
m−→q′∧r′ = q′ ‖ r, which means that p+q

m−→q′ and (p+q) ‖ r
m−→q′ ‖ r, with r′Rq′ ‖ r

A.15 CM 5 α·x|β .
= (α|β) · x

• Both α·p|β and (α|β) · p cannot terminate

• α·p|β m−→p′, which means that α·p n−→p′∧β
n′

−→ X ∧ m = n ⊕ n′ and α
n−→ X ∧ p′ = p and

α|β m−→ X and (α|β) · p m−→p, with p′Rp

• (α|β) · p m−→p′, which means that α|β m−→ X ∧ p′ = p and α
n−→ X∧β

n′

−→ X ∧ m = n ⊕ n′ and
α·p n−→p and α·p|β m−→p, with p′Rp

A.16 CM 6 α|β·x .
= (α|β) · x

Proof is symmetrical to the proof of axiom CM 5.
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A.17 CM 7 α·x|β·y .
= (α|β) · (x ‖ y)

• Both α·p|β·q and (α|β) · (p ‖ q) cannot terminate

• α·p|β·q m−→r, which means that α·p n−→p′∧β·q n′

−→q′∧m = n⊕n′∧r = p′ ‖ q′ and α
n−→ X∧p′ = p

and β
n′

−→ X ∧ q′ = q and α|β m−→ X and (α|β) · (p ‖ q) m−→p ‖ q, with rRp ‖ q

• (α|β) · (p ‖ q) m−→r, which means that α|β m−→ X∧ r = p ‖ q and α
n−→ X∧β

n′

−→ X∧m = n⊕n′

and α·p n−→p and β·q n′

−→q and α·p|β·q m−→p ‖ q, with rRp ‖ q

A.18 CM 8 (x + y)|z .
= x|z + y|z

• (p + q)|r m−→ X, which means p + q
n−→ X ∧ r

n′

−→ X ∧m = n⊕ n′ and

• p
n−→ X, which means p|r m−→ X and p|r + q|r m−→ X, or

• q
n−→ X, which means q|r m−→ X and p|r + q|r m−→ X

• p|r + q|r m−→ X, which means that

• p|r m−→ X, which means p
n−→ X∧ r

n′

−→ X∧m = n⊕n′ and p+ q
n−→ X and (p+ q)|r m−→ X,

or

• q|r m−→ X, which means q
n−→ X∧ r

n′

−→ X∧m = n⊕n′ and p + q
n−→ X and (p + q)|r m−→ X

• (p + q)|r m−→r′, which means that

• p + q
n−→ X ∧ r

n′

−→q′ ∧m = n⊕ n′ ∧ r′ = q′, which means that
• p

n−→ X, which means that p|r m−→q′ and p|r + q|r m−→q′, which r′Rq′, or
• q

n−→ X, which means that q|r m−→q′ and p|r + q|r m−→q′, which r′Rq′, or

• p + q
n−→q′ ∧ r

n′

−→ X ∧m = n⊕ n′ ∧ r′ = q′, which means that
• p

n−→p′ ∧ q′ = p′, which means that p|r m−→p′ and p|r + q|r m−→p′, which r′Rp′, or
• q

n−→p′ ∧ q′ = p′, which means that q|r m−→p′ and p|r + q|r m−→p′, which r′Rp′, or

• p + q
n−→p′ ∧ r

n′

−→q′ ∧m = n⊕ n′ ∧ r′ = p′ ‖ q′, which means that

• p
n−→p′′ ∧ p′ = p′′, which means that p|r m−→p′′ ‖ r′ and p|r + q|r m−→p′ ‖ r′, which

r′Rp′′ ‖ q′, or
• q

n−→p′′ ∧ p′ = p′′, which means that q|r m−→p′′ ‖ r′ and p|r + q|r m−→p′ ‖ r′, which
r′Rp′′ ‖ q′

• p|r + q|r m−→r′, which means that

• p|r m−→p′ ∧ r′ = p′, which means that

• p
n−→ X ∧ r

n′

−→q′ ∧m = n⊕ n′ ∧ p′ = q′, which means p + q
n−→ X and (p + q)|r m−→q′,

with r′Rq′, or

• p
n−→q′ ∧ r

n′

−→ X ∧m = n ⊕ n′ ∧ p′ = q′, which means p + q
n−→q′ and (p + q)|r m−→q′,

with r′Rq′, or

• p
n−→p′′∧r

n′

−→q′∧m = n⊕n′∧p′ = p′′ ‖ q′, which means p+q
n−→p′′ and (p+q)|r m−→p′′ ‖

q′, with r′Rp′′ ‖ q′

• q|r m−→p′ ∧ r′ = p′, which is symmetrical to the previous
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A.19 CM 9 x|(y + z)
.
= x|y + x|z

Proof is symmetrical to the proof of CM 8.

A.20 CM 10 〈−→a 〉|〈
−→
b 〉 .

= 〈−→a ,
−→
b 〉

• 〈−→a 〉|〈
−→
b 〉 m−→ X ∧m = [[〈−→a 〉]]⊕ [[〈

−→
b 〉]] = [[〈−→a ,

−→
b 〉]] and 〈−→a ,

−→
b 〉 m−→ X.

• Both 〈−→a 〉|〈
−→
b 〉 and 〈−→a ,

−→
b 〉 cannot do any transition.

A.21 CD1 δ|α .
= δ

Both δ|α and δ cannot terminate or make any transition.

A.22 CD2 α|δ .
= δ

Both α|δ and δ cannot terminate or make any transition.

A.23 VD ∇V (δ)
.
= δ

Both ∇V (δ) and δ cannot terminate or make any transition.

A.24 V 1 ∇V (α)
.
= α if [[α]] ∈ [[V ]] ∪ {[]}

Assuming [[α]] ∈ [[V ]] ∪ {[]}:

• ∇V (α) m−→ X, which means that α
m−→ X

• α
m−→ X, which means that ∇V (α) m−→ X

Both ∇V (α) and α cannot do any transition.

A.25 V 2 ∇V (α)
.
= δ if [[α]] 6∈ [[V ]] ∪ {[]}

Assuming [[α]] 6∈ [[V ]] ∪ {[]}, both ∇V (α) and δ cannot terminate or make any transition.

A.26 V 3 ∇V (x + y)
.
= ∇V (x) +∇V (y)

• ∇V (p + q) m−→ X, which means that p + q
m−→ X ∧m ∈ [[V ]] ∪ {[]} and

• p
m−→ X, which means that ∇V (p) m−→ X and ∇V (p) +∇V (q) m−→ X, or

• q
m−→ X, which means that ∇V (q) m−→ X and ∇V (p) +∇V (q) m−→ X

• ∇V (p) +∇V (q) m−→ X, which means that

• ∇V (p) m−→ X, which means that p
m−→ X∧m ∈ [[V ]]∪{[]} and p+q

m−→ X and∇V (p+q) m−→ X,
or

• ∇V (q) m−→ X, which means that q
m−→ X∧m ∈ [[V ]]∪{[]} and p+q

m−→ X and∇V (p+q) m−→ X

• ∇V (p + q) m−→r, which means that p + q
m−→r′ ∧m ∈ [[V ]] ∪ {[]} ∧ r = z′ and

• p
m−→p′ ∧ r′ = p′, which means that ∇V (p) m−→p′ and ∇V (p) +∇V (q) m−→p′, with rRp′, or

• q
m−→q′ ∧ r′ = q′, which means that ∇V (q) m−→q′ and ∇V (p) +∇V (q) m−→q′, with rRq′
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• ∇V (p) +∇V (q) m−→r, which means that

• ∇V (p) m−→p′ ∧ r = p′, which means that p
m−→p′′ ∧m ∈ [[V ]] ∪ {[]} ∧ p′ = p′′ and p + q

m−→p′′

and ∇V (p + q) m−→p′′, with rRp′′, or

• ∇V (q) m−→q′ ∧ r = q′, which means that q
m−→q′′ ∧m ∈ [[V ]] ∪ {[]} ∧ q′ = q′′ and p + q

m−→q′′

and ∇V (p + q) m−→q′′, with rRq′′

A.27 V 4 ∇V (x · y)
.
= ∇V (x) · ∇V (y)

Both ∇V (p · q) and ∇V (p) · ∇V (q) cannot terminate.

• ∇V (p · q m−→r), which means that p · q m−→r′ ∧m ∈ [[V ]] ∪ {[]} ∧ r = ∇V (r′) and

• p
m−→ X ∧ r′ = q, which means that ∇V (p) m−→ X and ∇V (p) · ∇V (q) m−→∇V (q), with

rR∇V (q), or

• p
m−→p′∧r′ = p′ ·q, which means that∇V (p) m−→∇V (p′) and∇V (p)·∇V (q) m−→∇V (p′)·∇V (q),

with rR∇V (p′ · q)

• ∇V (p) · ∇V (q) m−→r, which means that

• ∇V (p) m−→ X ∧ r = ∇V (q), which means that p
m−→ X ∧m ∈ [[V ]] ∪ {[]} and p · q m−→q and

∇V (p · q) m−→∇V (q), with rR∇V (q), or

• ∇V (p) m−→p′ ∧ r = p′ ·∇V (q), which means that p
m−→p′′ ∧m ∈ [[V ]]∪{[]}∧ p′ = ∇V (p′′) and

p · q m−→p′′ · q and ∇V (p · q) m−→∇V (p′′ · q), with rR∇V (p′′ · q)

A.28 DD ∂H(δ)
.
= δ

Both ∂H(δ) and δ cannot terminate or make any transition.

A.29 D1 ∂H(α)
.
= α if [[α]] ∩ [[H]] = ∅

Both ∂H(α) and α can only terminate (with
[[α]]−→).

A.30 D2 ∂H(α)
.
= δ if [[α]] ∩ [[H]] 6= ∅

Both ∂H(α) and δ cannot terminate or make any transition.

A.31 D3 ∂H(x + y)
.
= ∂H(x) + ∂H(y)

Proof is similar to the proof of axiom V 3.

A.32 D4 ∂H(x · y)
.
= ∂H(x) · ∂H(y)

Proof is similar to the proof of axiom V 4.

A.33 TID τI(δ)
.
= δ

Both τI(δ) and δ cannot terminate or make any transition.
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A.34 TI 1 τI(α)
.
= β with [[β]] = θ([[α]], I)

Both τI(α) and β can only terminate (with
θ([[α]],I)−→ ).

A.35 TI 3 τI(x + y)
.
= τI(x) + τI(y)

Proof is similar to the proof of axiom V 3.

A.36 TI 4 τI(x · y)
.
= τI(x) · τI(y)

Proof is similar to the proof of axiom V 4.

A.37 RD ρR(δ)
.
= δ

Both ρR(δ) and δ cannot terminate or make any transition.

A.38 R1 ρR(α)
.
= β with [[β]] = [[R]] • [[α]]

Both ρR(α) and β can only terminate (with
[[R]]•[[α]]−→ ).

A.39 R3 ρR(x + y)
.
= ρR(x) + ρR(y)

Proof is similar to the proof of axiom V 3.

A.40 R4 ρR(x · y)
.
= ρR(x) · ρR(y)

Proof is similar to the proof of axiom V 4.

A.41 GD ΓC(δ)
.
= δ

Both ρR(δ) and δ cannot terminate or make any transition.

A.42 G1 ΓC(α)
.
= β with [[β]] = γ([[α]], [[C]])

Process ΓC(α) can only terminate with γ([[α]], [[C]]) and β only with [[β]], which are equal according to
the condition of the axiom.

A.43 G3 ΓC(x + y)
.
= ΓC(x) + ΓC(y)

Proof is similar to the proof of axiom V 3.

A.44 G4 ΓC(x · y)
.
= ΓC(x) · ΓC(y)

Proof is similar to the proof of axiom V 4.

B Soundness proofs of τ axioms

The structure of the following proofs is the same as before, except for the fact that we prove R to be
a branching bisimulation and rooted(t, u) (for axiom t

.= u).
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B.1 T1 x · τ .
= x

We define E as τRX.

• p · τRp

• p · τ ↓, which is not possible
• p ↓, which means that p = X, which is not possible
• p · τ m−→p′, which means that

• p
m−→ X ∧ p′ = τ , with p′RX, or

• p
m−→p′′ ∧ p′ = p′′ · τ , with p′Rp′′, or

• p
m−→p′, which means that p · τ m−→p′ · τ , with p′Rp′ · τ

• rooted(p · τ, p), which is similar to the previous case

• τRX

• τ ↓, which is not possible

• X ↓, which means that τ
[]−→ X ↓

• τ
m−→p, which means that p = X ∧m = [], with pRX

• X
m−→p, which is not possible

B.2 T2 x · (τ · (y + z) + y)
.
= x · (y + z)

We define E as τ · (q + r) + qRq + r for all q, r ∈ Tpc.

• p · (τ · (q + r) + q)Rp · (q + r)

• p · (τ · (q + r) + q) ↓, which is not possible
• p · (q + r) ↓, which is not possible
• p · (τ · (q + r) + q) m−→r′, which means that

• p
m−→ X ∧ r′ = τ · (q + r) + q, which means that p · (q + r) m−→q + r, with r′Rq + r, or

• p
m−→p′ ∧ r′ = p′ · (τ · (q + r) + q), which means that p · (q + r) m−→p′ · (q + r), with

r′Rp′ · (q + r), or
• p · (q + r) m−→r′, which means that

• p
m−→ X ∧ r′ = q + r, which means that p · (τ · (q + r) + q) m−→τ · (q + r) + q, with

r′Rτ · (q + r) + q, or
• p

m−→p′ ∧ r′ = p′ · (q + r), which means that p · (τ · (q + r) + q) m−→p′ · (τ · (q + r) + q),
with r′Rp′ · (τ · (q + r) + q), or

• rooted(p · (τ · (q + r) + q), p · (q + r)), which is similar to the previous case

• τ · (q + r) + qRq + r

• τ · (q + r) + q ↓, which is not possible
• q + r ↓, which is not possible
• τ · (q + r) + q

m−→p, which means that
• τ · (q + r) m−→p, which means that

• τ
m−→ X ∧ p = q + r, which means that m = [] and pRq + r, or

• τ
m−→p′, which is not possible, or

• q
m−→p, which means that q + r

m−→p, with pRx

• q + r
m−→p, which means that τ · (q + r)

[]−→q + r
m−→p, with pRp
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C Soundness proofs of alphabet axioms

To prove the soundness of these alphabet axioms, we use a different approach as before, except for
the axioms containing a parallel operator. As the operators used in these axioms are all defined in a
similar way, namely:

x
m−→ X

O(x)
f(m)−→ X

C(m)
x

m−→x′

O(x)
f(m)−→O(x′)

C(m)

If we now wish to prove an axiom O1(. . . On(x) . . .) .= On+1(. . . On′(x) . . .), we get the following:

• O1(. . . On(x) . . .) m−→ X, which means that O2(. . . On(x) . . .) m1−→ X ∧ C1(m1) ∧ m = f1(m1)
∧ . . . ∧ x

mn−→ X∧Cn(mn)∧mn−1 = fn(mn) and therefore Cn+1(mn)∧. . .∧Cn′(fn′−1(. . . fn+1(mn) . . .))
and m = f ′n(. . . fn+1(mn) . . .) and On+1(. . . On′(x) . . .) m−→ X

• Etc.

So what really has to be proven is that for each m, such that x
m−→ X∨x

m−→x′, it holds that Cn(m)∧
. . .∧C1(f2(. . . fn(m))) ≡ Cn′(m)∧ . . .∧Cn+1(fn+2(. . . fn′(m))) and Cn(m)∧ . . .∧C1(f2(. . . fn(m))) ⇒
f1(. . . fn(m)) = fn+1(. . . fn′(m)).

Lemma C.1. Let v ∈ B(NA). Also, let S ⊆ NA. The following holds:

v ∩ S = N ({v}) ∩ S

Proof C.1. Induction on the structure of v. Case v = []:

[] ∩ S

= { def. ∩ }
∅

= { calculus }
∅ ∩ S

= { def. N }
N ({[]}) ∩ S

Case v = [a]⊕ w:

([a]⊕ w) ∩ S

= { def. ∩ }
w ∩ S if a 6∈ S
{a} ∪ (w ∩ S) if a ∈ S

= { induction hypothesis }
N ({w}) ∩ S if a 6∈ S
{a} ∪ (N ({w}) ∩ S) if a ∈ S

= { calculus }
({a} ∪ N ({w})) ∩ S if a 6∈ S
({a} ∪ N ({w})) ∩ ({a} ∪ S) if a ∈ S

= { calculus }
({a} ∪ N ({w})) ∩ S

= { def. N }
N ({[a]⊕ w}) ∩ S
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Lemma C.2. Let NB = {n | n ∈ B(NA)∧ 1 ≤ |n|} and C : NB → (NA ∪{τ}). Also, let N (dom(C))∩
rng(C) = ∅ and m,n ∈ B(A). The following holds:

γ(m⊕ n, C) = γ(m⊕ γ(n, C), C)

Proof C.2. Induction on the length of n and by the cases of γ. Case |n| = 0:

γ(m⊕ n, C)
= { n = [] }

γ(m⊕ [], C)
= { def. γ }

γ(m⊕ γ([], C), C)
= { n = [] }

γ(m⊕ γ(n, C), C)

Case |n| > 0 and ∃n′,o(n = n′ ⊕ o ∧ ∃〈b,a〉∈C(b = µ(n′) ∧ ∃−→
d ∈

−→
D

(χ(n′,
−→
d )))):

γ(m⊕ n, C)
= { take n′ and o with n = n′ ⊕ o ∧ ∃〈b,a〉∈C(b = µ(n′) ∧ ∃−→

d ∈
−→
D

(χ(n′,
−→
d )))) }

γ(m⊕ n′ ⊕ o, C)
= { take 〈b, a〉 ∈ C with b = µ(n′) ∧ ∃−→

d ∈
−→
D

(χ(n′,
−→
d )))), def. γ }

[a(
−→
d )]⊕ γ(m⊕ o, C)

= { induction hypothesis }
[a(
−→
d )]⊕ γ(m⊕ γ(o, C), C)

= { N (dom(C)) ∩ rng(C) = ∅, a ∈ rng(C) }
γ(m⊕ [a(

−→
d )]⊕ γ(o, C), C)

= { def. γ and a }
γ(m⊕ γ(n′ ⊕ o, C), C)

= { def. n′ and o }
γ(m⊕ γ(n, C), C)

Case |n| > 0 and ∃n′,o(n = n′ ⊕ o ∧ ∃〈b,τ〉∈C(b = µ(n′) ∧ ∃−→
d ∈

−→
D

(χ(n′,
−→
d )))), which is similar to the

previous case.
Case |n| > 0 and ¬∃n′,o(n = n′ ⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n′) ∧ ∃−→

d ∈
−→
D

(χ(n′,
−→
d )))):

γ(m⊕ n, C)
= { ¬∃n′,o(n = n′ ⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n′) ∧ ∃−→

d ∈
−→
D

(χ(n′,
−→
d )))), def. γ }

γ(m⊕ γ(n, C), C)

2
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C.1 VA1 ∇V (x)
.
= x if αν(x) ⊆ [[V ]]

µ(m) ∈ [[V ]]
≡ { αν(x) ⊆ [[V ]] }

µ(m) ∈ αν(x) ∨ µ(m) ∈ [[V ]]
≡ { def. αν }

true ∨ µ(m) ∈ [[V ]]
≡ { identity ∨ }

true

C.2 VA2 ∇V (x)
.
= δ if [[V ]] ∩ αν(x) = ∅

µ(m) ∈ [[V ]]
≡ { def. αν }

µ(m) ∈ [[V ]] ∧ µ(m) ∈ αν(x)
≡ { calculus }

µ(m) ∈ ([[V ]] ∩ αν(x))
≡ { [[V ]] ∩ αν(x) = ∅ }

false

C.3 VA3 ∇V (∇V ′(x))
.
= ∇V ∩V ′(x)

µ(m) ∈ [[V ]] ∧ µ(m) ∈ [[V ′]]
≡ { calculus }

µ(m) ∈ ([[V ]] ∩ [[V ′]])
≡ { def. ∩ }

µ(m) ∈ [[V ∩ V ′]]

C.4 VA4 ∇V (x ‖ y)
.
= ∇V (x ‖ ∇V ′(y)) if ⇓(V ) ⊆ V ′

We define E as ∇V (p)R∇V (∇V ′(p)) (for all p ∈ Tpc). The proof for this part is the same as the proof
of axiom VA3, as V ⊆⇓(V ) and thus V ∩ V ′ = V .

• ∇V (p ‖ q) m−→ X, which means that p ‖ q
m−→ X∧µ(m) ∈ [[V ]]∪{[]} and p

n−→ X∧ q
o−→ X∧m =

n⊕o and o ∈⇓ (V ) and ∇V ′(q) o−→ X and therefore p ‖ ∇V ′(q) m−→ X and ∇V (p ‖ ∇V ′(q)) m−→ X

• ∇V (p ‖ ∇V ′(q)) m−→ X, which means that p ‖ ∇V ′(q) m−→ X ∧ µ(m) ∈ [[V ]] ∪ {[]} and p
n−→ X ∧

∇V ′(q) o−→ X ∧ m = n ⊕ o and q
o−→ X ∧ µ(o) ∈ [[V ′]] ∪ {[]} and therefore p ‖ q

m−→ X and
∇V (p ‖ q) m−→ X

• ∇V (p ‖ q) m−→p′, which means that p ‖ q
m−→p′′ ∧ p′ = ∇V (p′′) ∧ µ(m) ∈ [[V ]] ∪ {[]} and

• p
m−→ X∧p′′ = q, which means that p ‖ ∇V ′(q) m−→∇V ′(q) and∇V (p ‖ ∇V ′(q)) m−→∇V (∇V ′(q)),

with p′R∇V (∇V ′(q)), or

• q
m−→ X ∧ p′′ = p, which means that ∇V ′(q) m−→ X and p ‖ ∇V ′(q) m−→p and ∇V (p ‖

∇V ′(q)) m−→∇V (p), with p′R∇V (p), or
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• p
m−→p′′′ ∧ p′′ = p′′′ ‖ q, which means that p ‖ ∇V ′(q) m−→p′′′ ‖ ∇V ′(q) and ∇V (p ‖

∇V ′(q)) m−→∇V (p′′′ ‖ ∇V ′(q)), with p′R∇V (p′′′ ‖ ∇V ′(q)), or

• q
m−→q′ ∧ p′′ = p ‖ q′, which means that ∇V ′(q) m−→∇V ′(q′) and p ‖ ∇V ′(q) m−→p ‖ ∇V ′(q′)

and ∇V (p ‖ ∇V ′(q)) m−→∇V (p ‖ ∇V ′(q′)), with p′R∇V (p ‖ ∇V ′(q′)), or

• p
n−→p′′′ ∧ q

o−→q′ ∧ m = n ⊕ o ∧ p′′ = p′′′ ‖ q′, which means that ∇V ′(q) o−→∇V ′(q′) and
p ‖ ∇V ′(q) m−→p′′′ ‖ ∇V ′(q′) and ∇V (p ‖ ∇V ′(q)) m−→∇V (p′′′ ‖ ∇V ′(q′)), with p′R∇V (p′′′ ‖
∇V ′(q′)), or

• p
n−→ X ∧ q

o−→q′ ∧ m = n ⊕ o ∧ p′′ = q′, which means that ∇V ′(q) o−→∇V ′(q′) and p ‖
∇V ′(q) m−→∇V ′(q′) and ∇V (p ‖ ∇V ′(q)) m−→∇V (∇V ′(q′)), with p′R∇V (∇V ′(q′)), or

• p
n−→p′′′ ∧ q

o−→ X ∧ m = n ⊕ o ∧ p′′ = p′′′, which means that ∇V ′(q) o−→ X and p ‖
∇V ′(q) m−→p′′′ and ∇V (p ‖ ∇V ′(q)) m−→∇V (p′′′), with p′R∇V (p′′′)

• ∇V (p ‖ ∇V ′(q)) m−→p′, which means that p ‖ ∇V ′(q) m−→p′′ ∧ p′ = ∇V (p′′) ∧ µ(m) ∈ [[V ]] ∪ {[]}
and

• p
m−→ X ∧ p′′ = ∇V ′(q), which means that p ‖ q

m−→q and ∇V (p ‖ q) m−→∇V (q), with
p′R∇V (q), or

• ∇V ′(q) m−→ X ∧ p′′ = p, which means that q
m−→ X ∧ µ(m) ∈ [[V ′]] ∪ {[]} and p ‖ q

m−→p and
∇V (p ‖ q) m−→∇V (p), with p′R∇V (p), or

• p
m−→p′′′ ∧ p′′ = p′′′ ‖ ∇V ′(q), which means that p ‖ q

m−→p′′′ ‖ q and ∇V (p ‖ q) m−→∇V (p′′′ ‖
q), with p′R∇V (p′′′ ‖ q), or

• ∇V ′(q) m−→q′ ∧ p′′ = p ‖ q′, which means that q
m−→q′′ ∧ q′ = ∇V ′(q′′) ∧ µ(m) ∈ [[V ′]] ∪ {[]}

and p ‖ q
m−→p ‖ q′′ and ∇V (p ‖ q) m−→∇V (p ‖ q′′), with p′R∇V (p ‖ q′′), or

• p
n−→p′′′ ∧ ∇V ′(q) o−→q′ ∧ m = n ⊕ o ∧ p′′ = p′′′ ‖ q′, which means that q

o−→q′′ ∧ q′ =
∇V ′(q′′) ∧ µ(o) ∈ [[V ′]] ∪ {[]} and p ‖ q

m−→p′′′ ‖ q′′ and ∇V (p ‖ q) m−→∇V (p′′′ ‖ q′′), with
p′R∇V (p′′′ ‖ q′′), or

• p
n−→ X∧∇V ′(q) o−→q′∧m = n⊕o∧p′′ = q′, which means that q

o−→q′′∧q′ = ∇V ′(q′′)∧µ(o) ∈
[[V ′]] ∪ {[]} and p ‖ q

m−→q′′ and ∇V (p ‖ q) m−→∇V (q′′), with p′R∇V (q′′), or

• p
n−→p′′′∧∇V ′(q) o−→ X∧m = n⊕o∧p′′ = p′′′, which means that q

o−→ X∧µ(o) ∈ [[V ′]]∪{[]}
and p ‖ q

m−→p′′′ and ∇V (p ‖ q) m−→∇V (p′′′), with p′R∇V (p′′′)

C.5 CA1 ΓC(x)
.
= x if dom([[C]])∩ ⇓(αν(x)) = ∅

γ(m, [[C]]) = m

≡ { def. γ }
¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d ))))

≡ { µ(n) ∈⇓(αν(x)) }
¬∃n,o(m = n⊕ o ∧ false)

≡ { calculus }
¬false

≡ { calculus }
true
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C.6 CA2 ΓC(ΓC′(x))
.
= ΓC∪C′(x) if N (dom([[C]])) ∩ N (dom([[C ′]])) = ∅ ∧

N (dom([[C]])) ∩ rng([[C ′]]) = ∅
Induction on the length of m and by the cases of γ (with C ′). Case |m| = 0:

γ(γ(m, [[C ′]]), [[C]]) = γ(m, [[C ∪ C ′]])
≡ { |m| = 0 }

γ(γ([], [[C ′]]), [[C]]) = γ([], [[C ∪ C ′]])
≡ { def. γ }

[] = []
≡ { refl. = }

true

Case |m| > 0 and ∃n,o(m = n⊕ o ∧ ∃〈b,a〉∈C′(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))):

γ(γ(m, [[C ′]]), [[C]]) = γ(m, [[C ∪ C ′]])
≡ { take n and o with m = n⊕ o ∧ ∃〈b,a〉∈C′(b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))) }

γ(γ(n⊕ o, [[C ′]]), [[C]]) = γ(n⊕ o, [[C ∪ C ′]])
≡ { def. γ, def. n and o }

γ([a(
−→
d )]⊕ γ(o, [[C ′]]), [[C]]) = [a(

−→
d )]⊕ γ(o, [[C ∪ C ′]])

≡ { a ∈ rng(C), N (dom([[C]])) ∩ rng([[C ′]]) = ∅ }
[a(
−→
d )]⊕ γ(γ(o, [[C ′]]), [[C]]) = [a(

−→
d )]⊕ γ(o, [[C ∪ C ′]])

≡ { induction hypothesis }
[a(
−→
d )]⊕ γ(o, [[C ∪ C ′]]) = [a(

−→
d )]⊕ γ(o, [[C ∪ C ′]])

≡ { refl. = }
true

Case |m| > 0 and ∃n,o(m = n ⊕ o ∧ ∃〈b,τ〉∈C′(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), which is similar to the

previous case.
Case |m| > 0 and ¬∃n,o(m = n⊕ o ∧ ∃c∈C′((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))):

γ(γ(m, [[C ′]]), [[C]]) = γ(m, [[C ∪ C ′]])
≡ { ¬∃n,o(m = n⊕ o ∧ ∃c∈C′((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

γ(m, [[C]]) = γ(m, [[C ∪ C ′]])

Again induction on m (with C). Case ∃n,o(m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))):

γ(m, [[C]]) = γ(m, [[C ∪ C ′]])
≡ { take n and o with m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))) }

γ(n⊕ o, [[C]]) = γ(n⊕ o, [[C ∪ C ′]])
≡ { def. γ, def. n and o, c ∈ [[C]] ⇒ c ∈ [[C ∪ C ′]] }

[a(
−→
d )]⊕ γ(o, [[C]]) = [a(

−→
d )]⊕ γ(o, [[C ∪ C ′]])

≡ { induction hypothesis }
[a(
−→
d )]⊕ γ(o, [[C ∪ C ′]]) = [a(

−→
d )]⊕ γ(o, [[C ∪ C ′]])

≡ { refl. = }
true
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Case ∃n,o(m = n⊕ o ∧ ∃〈b,τ〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), which is similar to the previous case.

γ(m, [[C]]) = γ(m, [[C ∪ C ′]])
≡ { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))),

¬∃n,o(m = n⊕ o ∧ ∃c∈C′((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), def. γ }

m = m

≡ { refl. = }
true

C.7 CA3 ΓC(x ‖ y)
.
= x ‖ ΓC(y) if ⇓(dom([[C]]))∩ ⇓(αν(x)) = ∅

• ΓC(p ‖ q) m−→ X, which means that p ‖ q
n−→ X∧m = γ(n, [[C]]) and p

o−→ X∧q
o′−→ X∧n = o⊕o′

and therefore ΓC(q)
γ(o′,[[C]])−→ X and p ‖ ΓC(q)

o⊕γ(o′,[[C]])−→ X, with m = γ(n, [[C]]) = γ(o⊕o′, [[C]]) =
o⊕ γ(o′, [[C]]) as ⇓({o}) ⊆⇓(αν(p)) and thus ⇓(dom([[C]]))∩ ⇓({o} = ∅

• p ‖ ΓC(q) m−→ X, which means that p
n−→ X∧ΓC(q) o−→ X∧m = n⊕o and q

o′−→ X∧o′ = γ(o, [[C]])

and therefore p ‖ q
n⊕o′−→ X and ΓC(p ‖ q)

γ(n⊕o′,[[C]])−→ X, with m = n ⊕ o = n ⊕ γ(o′, [[C]]) =
γ(n⊕ o′, [[C]]) as ⇓({n}) ⊆⇓(αν(p))

• ΓC(p ‖ q) m−→p′, which means that p ‖ q
n−→p′′ ∧m = γ(n, [[C]]) ∧ p′ = ΓC(p′′) and

• p
n−→ X ∧ p′′ = q and therefore p ‖ ΓC(q) n−→ΓC(q), with p′RΓC(q) and m = γ(n, [[C]]) = n

as ⇓({n}) ⊆⇓(αν(p)), or

• q
n−→ X ∧ p′′ = p and therefore ΓC(q)

γ(n,[[C]])−→ X and p ‖ ΓC(q)
γ(n,[[C]])−→ p, with p′Rp, or

• p
n−→p′′′ ∧ p′′ = p′′′ ‖ q and therefore p ‖ ΓC(q) n−→p′′′ ‖ ΓC(q), with p′Rp′′′ ‖ ΓC(q) and

m = γ(n, [[C]]) = n as ⇓({n}) ⊆⇓(αν(p)), or

• q
n−→q′ ∧ p′′ = p ‖ q′ and therefore ΓC(q)

γ(n,[[C]])−→ ΓC(q′) and p ‖ ΓC(q)
γ(n,[[C]])−→ p ‖ ΓC(q′),

with p′Rp ‖ ΓC(q′), or

• p
o−→p′′′ ∧ q

o′−→q′ ∧ n = o ⊕ o′ ∧ p′′ = p′′′ ‖ q′ and therefore ΓC(q)
γ(o′,[[C]])−→ ΓC(q′) and p ‖

ΓC(q)
o⊕γ(o′,[[C]])−→ p′′′ ‖ ΓC(q′), with p′Rp′′′ ‖ ΓC(q′) and m = γ(n, repC) = γ(o ⊕ o′, [[C]]) =

o⊕ γ(o′, [[C]]) as ⇓({o}) ⊆⇓(αν(p)), or

• p
o−→ X ∧ q

o′−→q′ ∧ n = o ⊕ o′ ∧ p′′ = q′ and therefore ΓC(q)
γ(o′,[[C]])−→ ΓC(q′) and p ‖

ΓC(q)
o⊕γ(o′,[[C]])−→ ΓC(q′), with p′RΓC(q′) and m = γ(n, repC) = γ(o⊕o′, [[C]]) = o⊕γ(o′, [[C]])

as ⇓({o}) ⊆⇓(αν(p)), or

• p
o−→p′′′∧q

o′−→ X∧n = o⊕o′∧p′′ = p′′′ and therefore ΓC(q)
γ(o′,[[C]])−→ X and p ‖ ΓC(q)

o⊕γ(o′,[[C]])−→ p′′′,
with p′Rp′′′ and m = γ(n, [[C]]) = γ(o⊕ o′, [[C]]) = o⊕ γ(o′, [[C]]) as ⇓({o}) ⊆⇓(αν(p))

• p ‖ ΓC(q) m−→p′, which is similar to the previous case

C.8 CA4 ΓC(x ‖ y)
.
= ΓC(x ‖ ΓC(y)) if N (dom([[C]])) ∩ rng([[C]]) = ∅

With (implicit use of) Lemma C.2, the soundness proof of the axiom becomes similar to the proof of
axiom VA4.
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C.9 DA1 ∂H(x)
.
= x if [[H]] ∩N (αν(x)) = ∅

µ(m) ∩ [[H]] = ∅
≡ { Lemma C.1 }

N ({µ(m)}) ∩ [[H]] = ∅
≡ { {µ(m)} ⊆ αν(x), [[H]] ∩N (αν(x)) = ∅ }

true

C.10 DA2 ∂H(x)
.
= δ if ∀v∈αν(x)(v ∩ [[H]] 6= ∅)

µ(m) ∩ [[H]] = ∅
≡ { def. αν , ∀v∈αν(x)(v ∩ [[H]] 6= ∅) }

false

C.11 DA3 ∂H(∂H′(x))
.
= ∂H∪H′(x)

µ(m) ∩ [[H]] = ∅ ∧ µ(m) ∩ [[H ′]] = ∅
≡ { set calculus }

(µ(m) ∩ [[H]]) ∪ (µ(m) ∩ [[H ′]]) = ∅
≡ { set calculus }

µ(m) ∩ ([[H]] ∪ [[H ′]]) = ∅
≡ { def. ∪ }

µ(m) ∩ ([[H ∪H ′]]) = ∅

C.12 DA4 ∂H(x ‖ y)
.
= ∂H(x) ‖ ∂H(y)

• ∂H(p ‖ q) m−→ X, which means that p ‖ q
m−→ X∧µ(m)∩[[H]] = ∅ and p

n−→ X∧q
o−→ X∧m = n⊕o

and therefore ∂H(p) n−→ X ∧ ∂H(q) o−→ X and ∂H(p) ‖ ∂H(q) m−→ X

• ∂H(p) ‖ ∂H(q) m−→ X, which means that ∂H(p) n−→ X ∧ ∂H(q) o−→ X ∧m = n ⊕ o and p
n−→ X ∧

q
o−→ X ∧ µ(n) ∩ [[H]] = ∅ ∧ µ(o) ∩ [[H]] = ∅ and therefore p ‖ q

m−→ X and ∂H(p ‖ q) m−→ X

• ∂H(p ‖ q) m−→p′, which means that p ‖ q
m−→p′′ ∧ p′ = ∂H(p′′) ∧ µ(m) ∩ [[H]] = ∅ and

• p
m−→ X ∧ p′′ = q and therefore ∂H(p) m−→ X and ∂H(p) ‖ ∂H(q) m−→∂H(q), with p′R∂H(q),

or

• q
m−→ X ∧ p′′ = p and therefore ∂H(q) m−→ X and ∂H(p) ‖ ∂H(q) m−→∂H(p), with p′R∂H(p),

or

• p
m−→p′′′ ∧ p′′ = p′′′ ‖ q and therefore ∂H(p) m−→∂H(p′′′) and ∂H(p) ‖ ∂H(q) m−→∂H(p′′′) ‖

∂H(q), with p′R∂H(p′′′) ‖ ∂H(q), or

• q
m−→q′ ∧ p′′ = p ‖ q′ and therefore ∂H(q) m−→∂H(q′) and ∂H(p) ‖ ∂H(q) m−→∂H(p) ‖ ∂H(q′),

with p′R∂H(p) ‖ ∂H(q′), or

• p
n−→p′′′∧q

o−→q′∧m = n⊕o∧p′′ = p′′′ ‖ q′ and therefore ∂H(p) n−→∂H(p′′′)∧∂H(q) o−→∂H(q′)
and ∂H(p) ‖ ∂H(q) m−→∂H(p′′′) ‖ ∂H(q′), with p′R∂H(p′′′) ‖ ∂H(q′), or

• p
n−→ X ∧ q

o−→q′ ∧m = n ⊕ o ∧ p′′ = q′ and therefore ∂H(p) n−→ X ∧ ∂H(q) o−→∂H(q′) and
∂H(p) ‖ ∂H(q) m−→∂H(q′), with p′R∂H(q′), or
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• p
n−→p′′′∧ q

o−→ X∧m = n⊕ o∧p′′ = p′′′ and therefore ∂H(p) n−→∂H(p′′′)∧∂H(q) o−→ X and
∂H(p) ‖ ∂H(q) m−→∂H(p′′′), with p′R∂H(p′′′)

• ∂H(p) ‖ ∂H(q) m−→p′, which is similar to the previous case

C.13 TA1 τI(x)
.
= x if [[I]] ∩N (αν(x)) = ∅

We prove θ(m, [[I]]) = m with induction on the structure of m. Case m = []:

θ([], [[I]])
= { def. θ }

[]

Case m = [a(
−→
d )]⊕ n:

θ([a(
−→
d )]⊕ n, [[I]])

= { def. θ, a 6∈ [[I]] }
[a(
−→
d )]⊕ θ(n, [[I]])

= { induction hypothesis }
[a(
−→
d )]⊕ n

C.14 TA3 τI(τI′(x))
.
= τI∪I′(x)

We prove θ(θ(m, [[I ′]]), [[I]]) = θ(m, [[I ∪ I ′]]) with induction on the structure of m. Case m = []:

θ(θ([], [[I ′]]), [[I]])
= { def. θ }

[]
= { def. θ }

θ([], [[I ∪ I ′]])

Case m = [a(
−→
d )]⊕ n:

θ(θ([a(
−→
d )]⊕ n, [[I ′]]), [[I]])

= { def. θ }
θ(θ(n, [[I ′]]), [[I]]) if a ∈ [[I ′]]
θ([a(

−→
d )]⊕ θ(n, [[I ′]]), [[I]]) if a 6∈ [[I ′]]

= { def. θ }
θ(θ(n, [[I ′]]), [[I]]) if a ∈ [[I ′]]
θ(θ(n, [[I ′]]), [[I]]) if a 6∈ [[I ′]] ∧ a ∈ [[I]]
[a(
−→
d )]⊕ θ(θ(n, [[I ′]]), [[I]]) if a 6∈ [[I ′]] ∧ a 6∈ [[I]]

= { calculus }
θ(θ(n, [[I ′]]), [[I]]) if a ∈ [[I ′]] ∨ a ∈ [[I]]
[a(
−→
d )]⊕ θ(θ(n, [[I ′]]), [[I]]) if a 6∈ [[I ′]] ∧ a 6∈ [[I]]

= { calculus }
θ(θ(n, [[I ′]]), [[I]]) if a ∈ [[I ∪ I ′]]
[a(
−→
d )]⊕ θ(θ(n, [[I ′]]), [[I]]) if a 6∈ [[I ∪ I ′]]

= { induction hypothesis }
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θ(n, [[I ∪ I ′]]) if a ∈ [[I ∪ I ′]]
[a(
−→
d )]⊕ θ(n, [[I ∪ I ′]]) if a 6∈ [[I ∪ I ′]]

= { def. θ }
θ([a(

−→
d )]⊕ n, [[I ∪ I ′]])

C.15 TA4 τI(x ‖ y)
.
= τI(x) ‖ τI(y)

This proof is similar to the proof of axiom DA4.

C.16 RA1 ρR(x)
.
= x if dom([[R]]) ∩N (αν(x)) = ∅

We prove [[R]] •m = m with induction on the structure of m. Case m = []:

[[R]] • []
= { def. • }

[]

Case m = [a(
−→
d )]⊕ n:

[[R]] • ([a(
−→
d )]⊕ n)

= { def. • }
[[[R]]+(a)(

−→
d )]⊕ ([[R]] • n)

= { induction hypothesis }
[[[R]]+(a)(

−→
d )]⊕ n

= { a 6∈ dom([[R]]) }
[a(
−→
d )]⊕ n

C.17 RA2 ρR(ρR′(x))
.
= ρR∪R′(x) if dom([[R]]) ∩ dom([[R′]]) = ∅ ∧ dom([[R]]) ∩

rng([[R′]]) = ∅
This is a special case of axiom RA3, as we have the following:

{〈a, b〉 | (〈a, b〉 ∈ [[R]] ∧ a 6∈ (dom([[R′]]) ∪ rng([[R′]]))) ∨ (〈c, b〉 ∈ [[R]] ∧ 〈a, c〉 ∈ [[R′]])∨
(〈a, b〉 ∈ [[R′]] ∧ b 6∈ dom([[R]]))}

≡ { dom([[R]]) ∩ dom([[R′]]) = ∅ ∧ dom([[R]]) ∩ rng([[R′]]) = ∅ }
{〈a, b〉 | (〈a, b〉 ∈ [[R]] ∧ true) ∨ false ∨ (〈a, b〉 ∈ [[R′]] ∧ true)}

≡ { calculus }
{〈a, b〉 | 〈a, b〉 ∈ [[R]] ∨ 〈a, b〉 ∈ [[R′]]}

≡ { calculus }
[[R ∪R′]]

C.18 RA3 ρR(ρR′(x))
.
= ρR′′(x) if [[R′′]] = {〈a, b〉 | (〈a, b〉 ∈ [[R]]∧a 6∈ (dom([[R′]])∪

rng([[R′]]))) ∨ (〈c, b〉 ∈ [[R]] ∧ 〈a, c〉 ∈ [[R′]]) ∨ (〈a, b〉 ∈ [[R′]] ∧ b 6∈ dom([[R]]))}
We prove [[R]] • ([[R′]] •m) = [[R′′]] •m with induction on the structure of m. Case m = []:
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[[R]] • ([[R′]] • [])
= { def. • }

[]
= { def. • }

[[R′′]] • []

Case m = [a(
−→
d )]⊕ n:

[[R]] • ([[R′]] • ([a(
−→
d )]⊕ n))

= { def. • }
[[[R]]+([[R′]]+(a))(

−→
d )]⊕ ([[R]] • ([[R′]] • n))

= { induction hypothesis }
[[[R]]+([[R′]]+(a))(

−→
d )]⊕ ([[R′′]] • n)

= { case analysis [[R′]]+(a) }
[[[R]]+(a)(

−→
d )]⊕ ([[R′′]] • n) if a 6∈ dom(R′)

[[[R]]+([[R′]]+(a))(
−→
d )]⊕ ([[R′′]] • n) if a ∈ dom(R′)

= { case analysis [[R]]+([[R′]]+(a)) }
[[[R]]+(a)(

−→
d )]⊕ ([[R′′]] • n) if a 6∈ dom(R′)

[[[R′]]+(a)(
−→
d )]⊕ ([[R′′]] • n) if a ∈ dom(R′) ∧ [[R′]]+(a) 6∈ dom(R)

[[[R]]+([[R′]]+(a))(
−→
d )]⊕ ([[R′′]] • n) if a ∈ dom(R′) ∧ [[R′]]+(a) ∈ dom(R)

= { def. R′′ }
[[[R′′]]+(a)(

−→
d )]⊕ ([[R′′]] • n) if a 6∈ dom(R′)

[[[R′′]]+(a)(
−→
d )]⊕ ([[R′′]] • n) if a ∈ dom(R′) ∧ [[R′]]+(a) 6∈ dom(R)

[[[R′′]]+(a)(
−→
d )]⊕ ([[R′′]] • n) if a ∈ dom(R′) ∧ [[R′]]+(a) ∈ dom(R)

= { case elimination }
[[[R′′]]+(a)(

−→
d )]⊕ ([[R′′]] • n)

= { def. • }
[[R′′]] • ([a(

−→
d )]⊕ n)

C.19 RA4 ρR(x ‖ y)
.
= ρR(x) ‖ ρR(y)

This proof is similar to the proof of axiom DA4.

C.20 VC1 ∇V (ΓC(x))
.
= ∇V (γC(∇V ′(x))) if [[V ′]] = {v⊕w | γ(v, [[C]])⊕w ∈ [[V ]]}

We prove µ(γ(m, [[C]])) ∈ [[V ]] ∪ {[]} ⇒ µ([]) ∈ [[V ′]] ∪ {[]} (as (P ≡ Q ∧ P ) ≡ (P ⇒ Q)) by induction
on the length of m and by the cases of γ. Case |m| = 0:

µ(γ([], [[C]])) ∈ [[V ]] ∪ {[]}
⇒ { right zero ⇒ }

true

⇒ { µ([]) = [] }
µ([]) ∈ [[V ′]] ∪ {[]}

Case |m| > 0 and ∃n,o(m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))):
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µ(γ(m, [[C]])) ∈ [[V ]] ∪ {[]}
≡ { take n and o with m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))) }

µ(γ(n⊕ o, [[C]])) ∈ [[V ]] ∪ {[]}
≡ { take 〈b, a〉 ∈ C with b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

µ([a(
−→
d )]⊕ γ(o, [[C]])) ∈ [[V ]] ∪ {[]}

≡ { def. µ }
[a]⊕ µ(γ(o, [[C]])) ∈ [[V ]] ∪ {[]}

≡ { calculus }
[a]⊕ µ(γ(o, [[C]])) ∈ {v | v ∈ [[V ]]}

≡ { calculus }
[a]⊕ µ(γ(o, [[C]])) ∈ {[a]⊕ v | [a]⊕ v ∈ [[V ]]}

≡ { calculus }
µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]}

≡ { idem. ∧ }
µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]}

⇒ { induction hypothesis }
µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}} ∪ {[]}

≡ { calculus }
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}})∨
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {[]})

≡ { calculus, µ(o) ∈ {[]} ≡ o = [] }
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}})∨
(µ(γ([], [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ o = [])

≡ { calculus, µ(γ([], [[C]])) = [] }
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}})∨
([a] ∈ [[V ]] ∧ o = [])

≡ { calculus }
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}})∨
(µ(o) ∈ {v′ | [a]⊕ v′ ∈ [[V ]]} ∧ o = [])

≡ { calculus }
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∧ µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}})∨
(µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}} ∧ o = [])

≡ { calculus }
(µ(γ(o, [[C]])) ∈ {v | [a]⊕ v ∈ [[V ]]} ∨ (µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}} ∧ o = []))∧
(µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}}∨
(µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}} ∧ o = []))

⇒ { weakening }
µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}}∨
(µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}} ∧ o = [])

≡ { P ∨ (P ∧Q) ≡ P }



C.21 VC2 ΓC(∇V (x)) .= ∇V (x) if dom(C)∩ ⇓(V ) = ∅ 41

µ(o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ {v′ | [a]⊕ v′ ∈ [[V ]]}}
≡ { calculus }

µ(o) ∈ {v ⊕ w | [a]⊕ γ(v, [[C]])⊕ w ∈ {[a]⊕ v′ | [a]⊕ v′ ∈ [[V ]]}}
⇒ { calculus, def. γ and a }

µ(o) ∈ {v ⊕ w | γ(µ(n)⊕ v, [[C]])⊕ w ∈ {v′ | v′ ∈ [[V ]]}}
≡ { calculus }

µ(n)⊕ µ(o) ∈ {µ(n)⊕ v ⊕ w | γ(µ(n)⊕ v, [[C]])⊕ w ∈ [[V ]]}
⇒ { calculus, def. µ }

µ(n⊕ o) ∈ {v ⊕ w | γ(v, [[C]])⊕ w ∈ [[V ]]}
≡ { def. n, o and V ′ }

µ(m) ∈ [[V ′]]
⇒ { weakening }

µ(m) ∈ [[V ′]] ∪ {[]}

Case |m| > 0 and ∃n,o(m = n ⊕ o ∧ ∃〈b,τ〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), which is similar to the

previous case.
Case |m| > 0 and ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))):

µ(γ(m, [[C]])) ∈ [[V ]] ∪ {[]}
≡ { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

µ(m) ∈ [[V ]] ∪ {[]}
⇒ { [[V ]] ⊆ [[V ′]] }

µ(m) ∈ [[V ′]] ∪ {[]}

C.21 VC2 ΓC(∇V (x))
.
= ∇V (x) if dom(C)∩ ⇓(V ) = ∅

µ(m) ∈ [[V ]]
⇒ { def. ⇓ }

⇓({µ(m)}) ⊆⇓(V )
⇒ { dom(C)∩ ⇓(V ) = ∅ }

dom(C)∩ ⇓({µ(m)}) = ∅
⇒ { calculus }

¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d ))))

⇒ { def. γ }
γ(m, [[C]]) = m

C.22 VD1 ∇V (∂H(x))
.
= ∂H(∇V (x))

µ(m) ∩ [[H]] = ∅ ∧ µ(m) ∈ [[V ]] ∪ {[]}
≡ { comm. ∧ }

µ(m) ∈ [[V ]] ∪ {[]} ∧ µ(m) ∩ [[H]] = ∅
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C.23 VD2 ∇V (∂H(x))
.
= ∇V ′(x) if [[V ′]] = {v | v ∈ [[V ]] ∧N ({v}) ∩ [[H]] = ∅}

µ(m) ∩ [[H]] = ∅ ∧ µ(m) ∈ [[V ]] ∪ {[]}
≡ { Lemma C.1 }

N ({µ(m)}) ∩ [[H]] = ∅ ∧ µ(m) ∈ [[V ]] ∪ {[]}
≡ { calculus }

µ(m) ∈ {v | v ∈ [[V ]] ∧N ({v}) ∩ [[H]] = ∅} ∪ {[]}
≡ { def. V ′ }

µ(m) ∈ [[V ′]] ∪ {[]}

C.24 VD3 ∂H(∇V (x))
.
= ∇V ′(x) if [[V ′]] = {v | v ∈ [[V ]] ∧N ({v}) ∩ [[H]] = ∅}

This proof is similar to the proof of axiom VD2.

C.25 VT ∇V (τI(x))
.
= τI(∇V ′(x)) if [[V ′]] = {v | θ(v, [[I]]) ∈ [[V ]]}

µ(θ(m, [[I]])) ∈ [[V ]] ∪ {[]}
≡ { calculus }

µ(θ(m, [[I]])) ∈ {v | v ∈ [[V ]]} ∪ {[]}
≡ { calculus }

µ(θ(m, [[I]])) ∈ {θ(v, [[I]]) | θ(v, [[I]]) ∈ [[V ]]} ∪ {[]}
≡ { calculus }

µ(m) ∈ {v | θ(v, [[I]]) ∈ [[V ]]} ∪ {[]}
≡ { def. V ′ }

µ(m) ∈ [[V ′]] ∪ {[]}

C.26 VR ∇V (ρR(x))
.
= ρR(∇V ′(x)) if [[V ′]] = {v | ([[R]] • v) ∈ [[V ]]}

µ([[R]] •m) ∈ [[V ]] ∪ {[]}
≡ { calculus }

µ([[R]] •m) ∈ {v | v ∈ [[V ]]} ∪ {[]}
≡ { calculus }

µ([[R]] •m) ∈ {[[R]] • v | ([[R]] • v) ∈ [[V ]]} ∪ {[]}
≡ { calculus }

µ(m) ∈ {v | ([[R]] • v) ∈ [[V ]]} ∪ {[]}
≡ { def. V ′ }

µ(m) ∈ [[V ′]] ∪ {[]}

C.27 CD1 ∂H(ΓC(x))
.
= ΓC(∂H(x)) if (N (dom(C)) ∪ rng(C)) ∩H = ∅

We prove µ(γ(m, [[C]]))∩H = ∅ ≡ µ(m)∩H = ∅ by induction on the length of m and by the cases of
γ. Case |m| = 0:

µ(γ([], [[C]])) ∩H = ∅
≡ { def. γ }

µ([]) ∩H = ∅
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Case |m| > 0 and ∃n,o(m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))):

µ(γ(m, [[C]])) ∩H = ∅
≡ { take n and o with m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))) }

µ(γ(n⊕ o, [[C]])) ∩H = ∅
≡ { take 〈b, a〉 ∈ C with b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

µ([a(
−→
d )]⊕ γ(o, [[C]])) ∩H = ∅

≡ { Lemma C.1 }
N ({µ([a(

−→
d )]⊕ γ(o, [[C]]))}) ∩H = ∅

≡ { def. N }
({a} ∪ N ({µ(γ(o, [[C]]))})) ∩H = ∅

≡ { Lemma C.1, calculus }
{a} ∩H = ∅ ∧ µ(γ(o, [[C]])) ∩H = ∅

≡ { induction hypothesis }
{a} ∩H = ∅ ∧ µ(o) ∩H = ∅

≡ { a ∈ rng(C) }
µ(o) ∩H = ∅

≡ { µ(n) ∈ dom(C) }
µ(n) ∩H = ∅ ∧ µ(o) ∩H = ∅

≡ { Lemma C.1, calculus }
µ(n⊕ o) ∩H = ∅

≡ { def. n and o }
µ(m) ∩H = ∅

Case |m| > 0 and ∃n,o(m = n ⊕ o ∧ ∃〈b,τ〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), which is similar to the

previous case.
Case |m| > 0 and ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))):

µ(γ(m, [[C]])) ∩H = ∅
≡ { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

µ(m) ∩H = ∅

C.28 CD2 ΓC(∂H(x))
.
= ∂H(x) if N (dom(C)) ⊆ H

µ(m) ∩H = ∅
≡ { Lemma C.1 }

N ({µ(m)}) ∩H = ∅
⇒ { N (dom(C)) ⊆ H }

N ({µ(m)}) ∩N (dom(C)) = ∅
⇒ { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

γ(m, [[C]]) = m
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C.29 CT1 τI(ΓC(x))
.
= ΓC(τI(x)) if (N (dom(C)) ∪ rng(C)) ∩ I = ∅

We prove θ(γ(m, [[C]]), [[I]]) = γ(θ(m, [[I]]), [[C]]) by induction on the length of m and by the cases of γ.
Case |m| = 0:

θ(γ([], [[C]]), [[I]])
= { def. γ and θ }

[]
= { def. γ and θ }

γ(θ([], [[I]]), [[C]])

Case |m| > 0 and ∃n,o(m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))):

θ(γ(m, [[C]]), [[I]])
= { take n and o with m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))) }

θ(γ(n⊕ o, [[C]]), [[I]])
= { take 〈b, a〉 ∈ C with b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

θ([a(
−→
d )]⊕ γ(o, [[C]]), [[I]])

= { a ∈ rng(C) }
[a(
−→
d )]⊕ θ(γ(o, [[C]]), [[I]])

= { induction hypothesis }
[a(
−→
d )]⊕ γ(θ(o, [[I]]), [[C]])

= { def. a and γ }
γ(n⊕ θ(o, [[I]]), [[C]])

= { n ∈ dom(C) }
γ(θ(n⊕ o, [[I]]), [[C]])

= { def. n and o }
γ(θ(m, [[I]]), [[C]])

Case |m| > 0 and ∃n,o(m = n ⊕ o ∧ ∃〈b,τ〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), which is similar to the

previous case.
Case |m| > 0 and ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))):

θ(γ(m, [[C]]), [[I]])
= { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

θ(m, [[I]])
= { θ(m, [[I]]) ⊆ m, def. γ }

γ(θ(m, [[I]]), [[C]])

C.30 CT2 ΓC(τI(x))
.
= τI(x) if N (dom(C)) ⊆ I

γ(θ(m, [[I]]), [[C]]) = θ(m, [[I]])
≡ { def. γ }

¬∃n,o(θ(m, [[I]]) = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d ))))

≡ { θ(m, [[I]]) ∩ [[I]] = ∅ }
true
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C.31 CR1 ρR(ΓC(x))
.
= ΓC(ρR(x)) if dom(R) ∩ rng(C) = ∅ ∧ dom(R) ∩

N (dom(C)) = ∅ ∧ rng(R) ∩N (dom(C)) = ∅
We prove [[R]] • γ(m, [[C]]) = γ([[R]] •m, [[C]]) by induction on the length of m and by the cases of γ.
Case |m| = 0:

[[R]] • γ([], [[C]])
= { def. γ and • }

[]
= { def. γ and • }

γ([[R]] • [], [[C]])

Case |m| > 0 and ∃n,o(m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))):

[[R]] • γ(m, [[C]])
= { take n and o with m = n⊕ o ∧ ∃〈b,a〉∈C(b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))) }

[[R]] • γ(n⊕ o, [[C]])
= { take 〈b, a〉 ∈ C with b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))), def. γ }

[[R]] • ([a(
−→
d )]⊕ γ(o, [[C]]))

= { a ∈ rng(C) }
[a(
−→
d )]⊕ ([[R]] • γ(o, [[C]]))

= { induction hypothesis }
[a(
−→
d )]⊕ γ([[R]] • o, [[C]])

= { def. a and γ }
γ(n⊕ ([[R]] • o), [[C]])

= { n ∈ dom(C) }
γ([[R]] • (n⊕ o), [[C]])

= { def. n and o }
γ([[R]] •m, [[C]])

Case |m| > 0 and ∃n,o(m = n ⊕ o ∧ ∃〈b,τ〉∈C(b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), which is similar to the

previous case.
Case |m| > 0 and ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→

d ∈
−→
D

(χ(n,
−→
d )))):

[[R]] • γ(m, [[C]])
= { |m| > 0 ⇒ ∃a,

−→
d , n(m = [a(

−→
d )]⊕ n), take such a,

−→
d and n }

[[R]] • γ([a(
−→
d )]⊕ n, [[C]])

= { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))), def. γ }

[[R]] • ([a(
−→
d )]⊕ γ(n, [[C]]))

= { def. • }
[[[R]]+(a)(

−→
d )]⊕ ([[R]] • γ(n, [[C]]))

= { induction hypothesis }
[[[R]]+(a)(

−→
d )]⊕ γ([[R]] • n, [[C]])

= { ¬∃n,o(m = n⊕ o ∧ ∃c∈C((c = 〈b, a〉 ∨ c = 〈b, τ〉) ∧ b = µ(n) ∧ ∃−→
d ∈

−→
D

(χ(n,
−→
d )))),

rng(R) ∩N (dom(C)) = ∅, def. γ }
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γ([[[R]]+(a)(
−→
d )]⊕ ([[R]] • n), [[C]])

= { def. • }
γ([[R]] • ([a(

−→
d )]⊕ n), [[C]])

= { def. a,
−→
d and n }

γ([[R]] •m, [[C]])

C.32 CR2 ΓC(ρR(x))
.
= ρR(x) if N (dom(C)) ⊆ dom(R)∧N (dom(C))∩rng(R) =

∅
We proof γ([[R]] •m, [[C]]) = [[R]] •m with induction on the structure of m. Case m = []

γ([[R]] • [], [[C]])
= { def. • and γ }

[]
= { def. • }

[[R]] • []

Case m = [a(
−→
d )]⊕ n:

γ([[R]] • ([a(
−→
d )]⊕ n), [[C]])

= { def. bullet }
γ([[[R]]+(a)(

−→
d )]⊕ ([[R]] • n), [[C]])

= { [[R]]+(a) ∈ rng(R) ∨ [[R]]+(a) 6∈ dom(R), def. gamma }
[[[R]]+(a)(

−→
d )]⊕ γ([[R]] • n, [[C]])

= { induction hypothesis }
[[[R]]+(a)(

−→
d )]⊕ ([[R]] • n)

= { def. • }
[[R]] • ([a(

−→
d )]⊕ n)

C.33 DT ∂H(τI(x))
.
= τI(∂H(x)) if [[I]] ∩ [[H]] = ∅

We proof µ(θ(m, [[I]]))∩ [[H]] = ∅ ≡ µ(m)∩ [[H ′]] = ∅ with induction on the structure of m. Case m = []

µ(θ([], [[I]])) ∩ [[H]] = ∅
≡ { def. θ }

µ([]) ∩ [[H ′]] = ∅

Case m = [a(
−→
d )]⊕ n:

µ(θ([a(
−→
d )]⊕ n, [[I]])) ∩ [[H]] = ∅

≡ { def. θ }
µ(θ(n, [[I]])) ∩ [[H]] = ∅ if a ∈ [[I]]
µ([a(

−→
d )]⊕ θ(n, [[I]])) ∩ [[H]] = ∅ if a 6∈ [[I]]

≡ { def. µ, Lemma C.1 and def. N }
µ(θ(n, [[I]])) ∩ [[H]] = ∅ if a ∈ [[I]]
µ([a(

−→
d )]) ∩ [[H]] = ∅ ∧ µ(θ(n, [[I]])) ∩ [[H]] = ∅ if a 6∈ [[I]]

≡ { induction hypothesis }
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µ(n) ∩ [[H]] = ∅ if a ∈ [[I]]
µ([a(

−→
d )]) ∩ [[H]] = ∅ ∧ µ(n) ∩ [[H]] = ∅ if a 6∈ [[I]]

= { a ∈ [[I]] ⇒ µ([a(
−→
d )]) ∩ [[H]] = ∅ }

µ([a(
−→
d )]) ∩ [[H]] = ∅ ∧ µ(n) ∩ [[H]] = ∅ if a ∈ [[I]]

µ([a(
−→
d )]) ∩ [[H]] = ∅ ∧ µ(n) ∩ [[H]] = ∅ if a 6∈ [[I]]

= { case elimination }
µ([a(

−→
d )]) ∩ [[H]] = ∅ ∧ µ(n) ∩ [[H]] = ∅

= { def. µ, Lemma C.1 and def. N }
µ([a(

−→
d )]⊕ n) ∩ [[H ′]] = ∅

C.34 DR ∂H(ρR(x))
.
= ρR(∂H′(x)) if [[H ′]] = {v | ([[R]] • v) ∈ [[H]]}

We proof µ([[R]] •m)∩ [[H]] = ∅ ≡ µ(m)∩ [[H ′]] = ∅ with induction on the structure of m. Case m = []

µ([[R]] • []) ∩ [[H]] = ∅
≡ { def. •, Lemma C.1 and def. N }

∅ = ∅
≡ { def. N and Lemma C.1 }

µ([]) ∩ [[H ′]] = ∅

Case m = [a(
−→
d )]⊕ n:

µ([[R]] • ([a(
−→
d )]⊕ n)) ∩ [[H]] = ∅

≡ { def. • }
µ([[[R]]+(a)(

−→
d )]⊕ ([[R]] • n)) ∩ [[H]] = ∅

≡ { def. •, Lemma C.1 and def. N }
µ([[[R]]+(a)(

−→
d )]) ∩ [[H]] = ∅ ∧ µ([[R]] • n) ∩ [[H]] = ∅

≡ { induction hypothesis }
µ([[[R]]+(a)(

−→
d )]) ∩ [[H]] = ∅ ∧ µ(n) ∩ [[H ′]] = ∅

≡ { def. µ and N , calculus }
[[R]]+(a) 6∈ [[H]] ∧ µ(n) ∩ [[H ′]] = ∅

≡ { def. H ′ }
a 6∈ [[H ′]] ∧ µ(n) ∩ [[H ′]] = ∅

≡ { def. µ and N , calculus }
µ([a(

−→
d )]) ∩ [[H ′]] = ∅ ∧ µ(n) ∩ [[H ′]] = ∅

≡ { Lemma C.1 and def. N }
µ([a(

−→
d )]⊕ n) ∩ [[H ′]] = ∅

C.35 TR τI(ρR(x))
.
= ρR(τI′(x)) if [[I]] = {[[R]]+(a) | a ∈ [[I ′]]}

We proof θ([[R]] •m, [[I]]) = [[R]] • θ(m, [[I ′]]) with induction on the structure of m. Case m = []

θ([[R]] • [], [[I]])
= { def. • and θ }
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[]
= { def. • and θ }

[[R]] • θ([], [[I ′]])

Case m = [a(
−→
d )]⊕ n:

θ([[R]] • ([a(
−→
d )]⊕ n), [[I]])

= { def. • }
θ([[[R]]+(a)(

−→
d )]⊕ ([[R]] • n), [[I]])

= { def. θ }
θ([[R]] • n, [[I]]) if [[R]]+(a) ∈ [[I]]
[[[R]]+(a)(

−→
d )]⊕ θ([[R]] • n, [[I]]) if [[R]]+(a) 6∈ [[I]]

= { induction hypothesis }
[[R]] • θ(n, [[I]]) if [[R]]+(a) ∈ [[I]]
[[[R]]+(a)(

−→
d )]⊕ ([[R]] • θ(n, [[I]])) if [[R]]+(a) 6∈ [[I]]

= { [[R]]+(a) ∈ [[I]] ≡ a ∈ [[I ′]], def, • }
[[R]] • θ(n, [[I]]) if a ∈ [[I ′]]
[[R]] • ([a(

−→
d )]⊕ θ(n, [[I]])) if [[R]]+(a) 6∈ [[I]]

= { def. θ, [[R]]+(a) 6∈ [[I]] ≡ a 6∈ [[I ′]] }
[[R]] • θ(n, [[I]]) if a ∈ [[I ′]]
[[R]] • θ([a(

−→
d )]⊕ n, [[I]]) if a 6∈ [[I ′]]

= { def. θ }
[[R]] • θ([a(

−→
d )]⊕ n, [[I ′]])
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