
Efficient Rewriting Techniques

Muck van Weerdenburg

Rewriting - What is it?

Collection of rules

that describe how we can manipulate objects.

Rewriting - What is the use?

We can give rules such that we can calculate things like:

(32 + 20) ∗ 13 → . . .→ 377

or

up(right()) → . . .→

Goal - What do we want?

We often have very big or very many calculations.

E.g. analysing communication protocol for mobile phone easily
requires billions of rewrites.

We want speed!

Goal - What did we do?

• Formal definition of match trees

• Given a method for efficient term construction

• New strategy framework: strategy trees

Match Trees - Matching?

Matching is the process of seeing if a rule can be applied:

Can 0 ∗ x → 0 be applied to 0 ∗ (1 + 1)?

Yes, take (1 + 1) for x .

Can 0 ∗ x → 0 be applied to 1 ∗ (1 + 1)?

No, 1 ∗ (1 + 1) does not start with 0.

Match Trees - Example

Which of the following objects matches ?

Match Trees - The naive approach

Is it red and round? No.

Is it green and round? No.

. . .

Is it red and square? No.

Is it green and square? Yes:

. . .

Match Trees - Using a match tree

Red?

Green?

Square? Blue?

Round?

noyes

noyes

noyes

Match Trees - The difference

Naive: on average 12 questions needed (≈ shapes times colours)

Trees: on average 4.5 questions needed (≈ shapes plus colours)

Term Construction

We have given a method to construct terms and

• add function annotations to mark already rewritten parts

• add function annotations to avoid unrewritable parts

• directly rewrites parts that will be rewritten later on any way

This method avoids a lot of work

(E.g. trying to rewrite terms that cannot or are already rewritten)

Term Construction

Example: assume that we apply rule sin(x + x)→ sin(2 ∗ x) to
sin(3 + 3).

Note that 3 is already rewritten.

“add function annotations to mark already rewritten parts”

This gives sin(2 ∗ 3)

(Or actually sin(2 ∗{2} 3))

Term Construction

Example: assume that we apply rule sin(x + x)→ sin(2 ∗ x) to
sin(3 + 3).

Note that 3 is already rewritten.

“add function annotations to avoid unrewritable parts”

We have no rewrite rules for 2

This gives sin(2 ∗ 3)

Term Construction

Example: assume that we apply rule sin(x + x)→ sin(2 ∗ x) to
sin(3 + 3).

Note that 3 is already rewritten.

“directly rewrites parts that will be rewritten later on anyway”

We first rewrite 2 ∗ 3 to 6 as we will need it later on anyway

Then we get sin(6)

Strategy Trees - What is a strategy?

A strategy defines how to make choices.

(0 + 0) ∗ (1 + 1) → 0 ∗ (1 + 1)

or

(0 + 0) ∗ (1 + 1) → (0 + 0) ∗ 2

Strategy Trees - What does it matter?

Often used simple strategy: innermost

(0 + 0) ∗ (1 + 1) → 0 ∗ (1 + 1) → 0 ∗ 2 → 0

Better: just-in-time

(0 + 0) ∗ (1 + 1) → 0 ∗ (1 + 1) → 0

Strategy Trees - Better than just-in-time?

Numbers within something (e.g. sets, lists, boxes, trains)

With just-in-time:

boxed?(box(1 + 1)) → boxed?(1+1) → boxed?(2) → yes

Quicker: strategy trees

boxed?(box(1 + 1)) → boxed?(1+1) → yes

Evaluation

We have evaluated each of the mentioned techniques

All test have shown a positive impact on rewriting

	Rewriting
	Goal
	Match Trees
	Term Construction
	Strategy Trees

