Efficient Rewriting Techniques

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 1 april 2009 om 16.00

door
Muck Joost van Weerdenburg

geboren te 's-Hertogenbosch

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J.F. Groote
en
prof.dr. M.G.J. van den Brand

Copromotor:
dr.ir. M.A. Reniers

The work in this thesis has been carried out under the auspices of the research
school TPA (Institute for Programming research and Algorithmics).

IPA dissertation series 2009-06.

A catalogue record is available from the Eindhoven University of Technology Li-
brary.

ISBN 978-90-386-1671-1

© 2009 Muck van Weerdenburg,.

Typeset using BTEX.
Printed by Printservice Technische Universiteit Eindhoven.
Cover design by Muck van Weerdenburg. (And no, it’s not a gallow.)

Contents

1 Introduction
2 Preliminaries
2.1 Rewriting Lo
2.2 Compiling Rewriters o
3 Match Trees
3.1 Imtroduction
3.2 Match Trees o e
3.3 Extensions. e
3.3.1 Conditional Rewrite Rules
3.3.2 Adding Applicative Terms
3.3.3 Adding Priority oo
3.4 Optimisation
4 Temporary-Term Construction
4.1 Introduction
4.2 Annotations
4.3 Construction e
4.4 Essential-Argument Detection 0L
5 Strategy Trees
5.1 Introduction.
5.2 Syntax and Semantics
5.3 Normalisation o
5.4 Strategy Generationo
5.5 Strategies and Matching o oL
6 Evaluation
6.1 Introduction
6.2 Match Trees e
6.3 Temporary-Term Construction
6.4 Strategy Trees

w 1

17
17
19
30
31
32
35
38

49
49
51
52
54

59
59
61
66
70
()

ii

Contents

6.5 Previous Results 85
Conclusions 89
Fixed-Point Definitions 91
A.1l Introduction 91
A2 Semantics 91
A3 Approximations L. 92
Preliminaries Proofs 93
B.1 Definitions and Lemmata 93
B.2 Theorem 2.1.1. 94
B.3 Theorem 2.1.2.. 94
B4 Corollary 2.1.3o 95
B.5 Corollary 2.1.4o 95
B.6 Corollary 2.1.5 95
B.7 Theorem 2.1.6 96
Match-Tree Proofs 97
C.1 Theorem 3.2.3.o 97
C.2 Corollary 3.2.4 e 99
C.3 Property 3.2.5. 100
C.4 Theorem 3.2.7o 102
C.5 Theorem 3.3.1. o 103
C.6 Property 3.3.3. 104
C.7 Theorem 3.3.4. 104
C.8 Theorem 3.4.1. 104
C.9 Theorem 3.4.2. e 108
Temporary-Term-Construction Proofs 111
D.1 Lemmata 111
D.2 Theorem 4.3.1. 112
D.3 Theorem 4.3.2.o 112
D.4 Theorem 4.3.3. e 113
Strategy Tree Proofs 115
E.1 Definitions and Lemmata 115
E.2 Theorem 5.2.1. e 119
E.3 Theorem 5.2.2. 120
E.4 Theorem 5.2.8.o 121
E.5 Theorem 5.3.1. e 122
E.6 Theorem 5.3.2. 124
E.7 Theorem 5.3.4. 129
E.8 Theorem 5.4.1.o 131

Contents

F Benchmarks
F.1 Prioritised eq
F.2 Prioritised fac
F.3 fib(15)
F.4 evalexp(5)
F.5 evaltree(5)
F.6 evalsym(5).
F7 setadd.
F8 alleven
F.9 exppeano
F.10 exp binary
F.11 higher-order binary search

Bibliography
Index
Summary

Curriculum Vitae

iii

155
155
155
155
156
158
159
160
161
162
162
163

165

170

173

175

v

Contents

Chapter 1

Introduction

A rewrite system is a simple system consisting of a set of rules that determine how
certain structures (terms) can be transformed. For example, one could have a rule
a — b that states that any occurrence of ¢ may be replaced by b. Thus, if one has
a term f(a,c) we can apply this rule to obtain f(b,c).

The most typical practical application of rewrite systems is as implementation
of (simple) functional languages. In such languages one often defines functions by
giving transformations of patterns. For example, take the factorial function !. A
functional way to define the factorial is as follows.

o -
(n+1)! = (n+1) nl

By considering these equations as rewrite rules from left to right (i.e. replacing the
= by —), one can calculate the value of a factorial (assuming there are also rules
to rewrite terms of the form n 4+ m and n - m). For instance, if we are interested
in the value of ((0+ 1) + 1)! (which is a complex way of writing 2!), we can apply
rewrite rule (n 4+ 1)! — (n+ 1) -n! to get ((0+ 1)+ 1) - (0 + 1)! and once more
to get ((04+1)+1)-((0+1)-0!). Applying rewrite rule 0! — 1 and standard
arithmetic we get 2-1-1 and eventually 2. The latter can usually not be rewritten
any further and is therefore called a normal form (of ((0+ 1) 4+ 1)!). When using
rewrite systems as implementation of a language, one’s goal is to obtain a normal
form of a given term as fast as possible.

Of course, in order to do so, the rewrite system itself still has to be implemented
on an actual computer. Such an implementation is called a rewriter. As there are
often many ways to rewrite a term — 3! 4+ 4! can be rewritten to both 6 + 4! and
3! + 24 — and not all ways are as efficient as others, this implementation follows
some strategy to determine the order in which rewrite rules need to be applied. A
rewrite system usually allows for a great deal of freedom with respect to choosing
such a strategy.

2 Chapter 1. Introduction

Probably the most well-known applications of rewrite systems for the evaluation
of functional programs are those of Haskell [Pey03, HHPWO07, LS93] and Clean
[P1a95]. In [Pey87] a detailed documentation for implementation of such systems
is given. The main topics seem to be common for implementations of functional
languages: translation to an intermediate language, combining patterns of rewrite
rules into match trees [Pey87, Aug85, Sch88] and using an abstract machine to
perform the actual rewriting (using the intermediate language). Note that in
order to be able to explicitly handle sharing of subterms, these implementations
often use the more general graph rewriting instead of term rewriting [BvEG™87].

Another useful application of (term) rewrite systems is in symbolic reasoning.
For example, rewriters are used for program transformation [Vis05] (e.g. ASF/SDF
[vdBvDH'01], Stratego/XT [Vis04]) and to support theorem proving [Nip89] and
model checking (e.g. in uCRL [BFGT01], nCRL2 [GMvWU07, GMR"08]). In the
latter settings rewriting is typically used to (in some sense) simplify expressions.

To illustrate, one of the most essential aspects in, for instance, generation of
state spaces in the pCRL and mCRL2 toolsets is finding all solutions of a boolean
expression. This is needed to obtain an explicit state space from the used compact
symbolic representation. Here rewriting is used to simplify an expression as n < 0
(with n a natural number) to false such that it is easy to determine that there are
no solutions to n < 0 without having to investigate all possible values of n.

An important difference between functional-program evaluation and symbolic
reasoning is that for the former one typically only rewrites closed terms (i.e. terms
without variables) while it is essential to rewrite open terms for the latter.

The origin of this thesis lies in the development of the mCRL2 toolset. As it is
meant as a successor to the pyCRL toolset, there are a lot of similarities between
the two. Specifically, both have rewriters that use either an innermost strategy or
just-in-time strategies [vdP01]. The just-in-time rewriters are an improvement over
innermost rewriters in that they can avoid rewriting unneeded subterms while with
an innermost strategy one always rewrites every subterm regardless of whether it
is needed. Also, both toolsets make use of so-called compiling rewriters. These are
rewriters that, on initialisation, create and compile code that is specialised for the
given rewrite system. Instead of having one general piece of code that can rewrite
with arbitrary rules, compiling rewriters have a specialised piece of code for each
function symbol.

In [vWO07] we evaluated the performance of the mCRL2 compiling rewriters by
comparing them with various other rewriters or functional language evaluators.
One of the observations made was that in some tests the implementation of the
just-in-time rewriter was significantly slower than the innermost rewriter. This
is somewhat peculiar as just-in-time rewriting never requires more rewrite steps
than innermost rewriting. The reason that it was nevertheless slower is that an
innermost rewriter can be (and was) implemented in such a way that it does
not unnecessarily construct terms in cases where each subterm is relevant. This is
possible because of the way an innermost rewriter traverses terms. When using the

just-in-time rewriter, which usually traverses terms differently, these unnecessary
constructions were not avoided.

A similar observation was made in [HFAT96], where various implementations of
functional languages were compared to each other using one specific benchmark.
The implementations that employed lazy evaluation [FWT76, HI76] were, in general,
slower than those that used eager evaluation.

Another observation that can be made based on the results from [vWO07] is that
taking the best of both mCRL2 rewriters gives results that, looking at execution
times, come reasonably close to the other considered systems but still are a factor
2 or 3 behind. It is hard to determine precisely what the cause is due to the many
differences between implementations. However, one likely cause is the use of lazy
evaluation in the implementations of functional languages as Haskell and Clean
versus a much more eager evaluation in the mCRL2 rewriters. Even though usage
of just-in-time strategies allows one to avoid rewriting subterms, once you start
rewriting one, you only stop when it is in normal form.

In this thesis we consider three aspects of implementing term rewriting. First of
all, in Chapter 3, we look at matching: the process of finding the values of variables
of a pattern such that it is equal to a given term. For example, when we have a
rewrite rule inc(n) — n 4+ 1 and we try to apply this rule to term inc(2), we need
to match the pattern inc(n) to this term inc(2). Obviously, by taking n equal to
2 we have a match and can apply the rewrite rule to obtain 2 + 1.

When there is overlap in the patterns of rewrite rules, as is the case for the
definition of + on “Peano numbers” below, we want to avoid repeating the same
activities such as determining the value for n.

n+0 — n
n+Sim) — Sh+m)

The typical approach to do this is combining a collection of rewrite rules (typically
with the same head symbol in the pattern) into a simple structure called a match
tree. Such a match tree can then be used to efficiently determine which of the
original rewrite rules can be applied to a given term.

We find that definitions of match trees found in literature [Pey87, Aug85, Sch&8,
Mar92] are either ad-hoc or too complex. The complexity seems to be the result of
giving a direct translation of a set of rewrite rules to a match tree. Instead of this
“all-in-one” approach, we wish to establish a relatively simple formal definition
of match trees by separating the construction of match trees from a rule and the
combination of these match trees into one single match tree.

Another aspect we consider is temporary-term construction. During rewriting
there usually are many intermediate results. For example, in the rewriting of 2!
above, we had intermediate results such as ((0+1)+1)-(0+1)! and 2-1-1. Now
assume that we are rewriting term inc(2) and know that subterm 2 is in normal
form. If we then apply rewrite rule inc(n) — n + 1 we obtain the temporary term

4 Chapter 1. Introduction

2 + 1, which we can rewrite further. However, we somehow wish to remember
that 2 is already in normal form and avoid rewriting it again (as part of rewriting
2+41). Rewriting normal forms can be quite costly even though effectively nothing
is done.

Also, in some cases we know that specific parts of temporary terms are certainly
going to be rewritten later on. For example, in the rewrite rules for 4+ above, we
must always rewrite the second argument of + to be able to determine whether
or not it can be written as 0 or as S(m), for some m. So instead of constructing
a temporary term n + (2 + 3), for example, we can immediately rewrite 2+ 3 to 5
and construct n + 5.

In Chapter 4 we give two methods. One allows for efficient annotation of terms
to keep track of normal forms. The other determines which parts of temporary
terms will be rewritten later on in any case (similar to strictness analysis [PvE93]).
By employing these methods, just-in-time rewriting requires significantly less term
constructions and the gap between innermost and just-in-time rewriting has been
closed in those cases where just-in-time rewriting was (significantly) slower than
innermost rewriting in [vWO7].

The final aspect we consider is rewrite strategies. As mentioned before, in order
to implement a rewrite system one needs a strategy that determines what action
to perform in what situation. One method of defining such strategies is by using
Just-in-time strategies [vdP01]. An essential characteristic of these just-in-time
strategies is that they facilitate rewriting in such a manner that avoids rewriting
certain subterms that are not relevant in obtaining a normal form. For example,
the term if (b, ¢, u) typically rewrites to ¢t or u depending on whether b rewrites to
true or false. In either case, however, only one of the terms ¢ and v is relevant for
the result. Just-in-time enables one to only rewrite either ¢ or u, depending on
which of them is going to be the result.

A downside of just-in-time strategies is that if a (sub)term is rewritten, it is
always completely rewritten to normal form. There are cases where this is not
necessary and possibly even results in infinite behaviour. Sometimes one only
needs to know the head symbol of a subterm to continue rewriting. A typical
example is a function to obtain the length of a list. For the calculation of this
function it is not relevant what the elements of the lists are; only the structure of
the list matters.

Our goal in Chapter 5 is to give an extension of just-in-time strategies that does
not have this downside and a method that automatically generates strategies from
rewrite rules using this extension. We do this by adding the possibility to rewrite
a subterm to stable-head form, which is a form where the head symbol will not
change with further rewriting. With this it is possible to rewrite only as much as
is needed to perform matching. For example, to match f(¢) to a pattern f(g(x)),
you only need to rewrite subterm ¢ until you know that the head symbol of its
normal form is g or not; ¢ itself need not be in normal form.

For the same reason E-strategies [GWM™93, OF97], used in OBJ [GWJIMJ00],

were extended to on-demand E-strategies [GWJIMJ00, OF00]. These E-strategies
are similar to just-in-time strategies only without control over which rewrite rules
are tried and without restrictions on the contents of a strategy. The latter is due
to the fact that E-strategies are meant to be used with terms that need not have
a normal form, while just-in-time strategies are meant to ensure a normal form.
We do not consider the on-demand extension, or E-strategies in general, sufficient
because it lacks control over the application of rewrite rules as well as control over
when terms are rewritten to, for example, stable-head form. It is only possible to
mark an argument as a whole as “on-demand” and only during matching subterms
are rewritten as needed.

To conclude, we investigate the performance of various methods we discussed in
Chapter 6 and give some concluding remarks in Chapter 7. Note that all proofs
of theorems and properties are given in the appendices.

Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Rewriting

We introduce the notations and concepts we use throughout this thesis.

Terms

A signature X consists of a set of variables V and a set of function symbols
F. With x € V and f € IF, terms T are defined as follows (with ¢t € T).

t:=a | ft,....,1)

Given an term f(t1,...,t,) we call f the head symbol and term ¢; the ith
argument. The head symbol of a term ¢ is denoted by hs(t) (where we leave the
case t € V undefined!). Each function symbol f has an arity ar(f) which indicates
the number of arguments it takes. We write var(¢) for the set of variables that
occur in t. That is, var(z) = {«} and var(f(t1,...,tn)) = Uj<;<, var(ts;).
Sometimes we also consider applicative terms. These have the following syntax.

tima | f])
We often write f(t1,...,tn) for f(t1)(t2) ... (tn).
Substitutions are functions o, 7,...: V — T. A substitution ¢ applied to term

t, notation to, is defined as o(z) if t = z and f(t10,...,t,0) if t = f(t1,...,tn).
We write o[z — ¢] for the substitution that maps x to ¢t and y # z to o(y). A term
t matches a term w if, and only if, 3,(t = uc). We also refer to u as a pattern.
To facilitate operations on subterms we inductively define positions (P) as
follows. A position is either e (the empty position) or an index ¢ (from 1,2,...)

1With undefined we do not mean that a function is partial but that we simply do not know
what the precise value is for some arguments.

8 Chapter 2. Preliminaries

combined with a position 7, notation 7 - w. We lift - to an associative operator on
positions with € as its unit element and often write just ¢ for the position i -e. We
write the subterm of ¢ at position 7 as t|, and we write term ¢ with the subterm
at position 7 replaced by u as t[u],. These operations are defined as follows.

t|e =t

f(t17~~~7tn)|i-7r = ti|ﬂ— 1f1§z§n
tu). = u

xusrn = =z

f(th...,tn)[u]i,ﬂ- = f(tl,...,ti_l,ti[u]ﬂ,ti_i_l,...,tn) leSTl
f(tl,...,tn)[u]i.ﬂ— = f(tl,...,tn) ifi>n

We also use a generalisation of t[u], that takes a set of positions IT and a function
mapping positions to terms. This generalisation is defined as follows. Note that
it only applies a substitution at position 7 € II if there is no (smaller) prefix of 7
in IL

tlelo =t

t[cp]HU{Tr,ﬂ'-ﬂ"} = t[@]nu{w}

telnugry = (tle(m]n)lelmny if ~Fu (w7’ €10)
t[‘P]H = t[(p]Hﬁpos(t)

We write II to denote the set of positions that have a prefix = in IT (i.e. IT =
{m-7" . ©mell}).

We write pos(t) for all the valid positions for term ¢. A position 7 is a valid
position for ¢ if ¢|, is well-defined. That is, pos(z) = {e} and pos(f(t1,...,t,)) =
{efu{i-m : 1<i<n A mepos(t;)}. Also, we write pos;(t) for the set of valid
positions of function application in ¢ (i.e. posg(t) = {m : = € pos(t) A t|r € V})
and pos, (t) for the set of valid positions of variables in ¢ (i.e. pos,(t) = {7 : 7w €
pos(t) A tlr € V}).

We define the set of positions that indicate the “difference” between a term ¢
and a pattern u, notation 9(t,u) as follows. Note this notion does not include
differences that are the result of multiple occurrences of the same variable in u

(i.e. A(f(a,b), f(z,z)) =0).

8(t7u) = a(tau76)

ot,z,m) = 0

8(I7f(t17 '~atn)77r) = {ﬂ—}

a(f(tla” atn)af(ulv-' 7un)77r) = Ulgigna(ti»ui»'n’i)

a(f(tla 7tn)ag<u17"'aum)7ﬂ-) = {ﬂ-} lff#g

2.1. Rewriting 9

Instead of a pattern u we often use an object that has a (single) pattern (e.g. a
rewrite rule as defined below). For example, we write d(t, 0) for (¢, u) if u is the
pattern of o.

Rewriting

Rewrite rules are of the form ¢t — u if ¢, where t ¢ V and var(u)Uvar(c) C var(t).
Term c is the condition of a rewrite rule indicating whether or not the rule may be
applied. Often we omit this condition in the case ¢ is syntactically equal to true.
We often refer to t as the pattern of the rewrite rule. The set of rewrite rules is
denoted by R.

We write (X, —,n) for a signature X, set of rewrite rules —C T(X) x T(X) x
T(X) and condition-evaluation function 7 : T(X) — B (where B is the set
of booleans) to denote a Term Rewrite System (TRS) [DJ90]. The condition-
evaluation function 7 is use to determine whether or not a condition is satisfied.
Typically 7(c), for some condition ¢, is true when the specific implementation of a
rewrite system can rewrite ¢ to true (i.e. an instantiation of type III of [BKS86]).

If R is a set of rewrite rules, we often write Ry to denote the subset of R
containing all rules from R where f is the head symbol of the left-hand side. If
Ry is empty, we call f a constructor function (with respect to R).

Let R be a set of rewrite rules. The rewrite relation — g on terms is defined as
follows.

vt,u(t —RU & HW,J,ZHT if CGR(HW =lo N u= t[rg]ﬁ A 77(00)))

We also write — instead of — g if no confusion can occur. We write —7% for the
reflexive and transitive closure of —g and t 4 if there is no u such that ¢t —g u.

A normal form of ¢ is a term u such that t =% « and u /4pr. We also refer
to uw as a full normal form. We denote the set of all normal forms of a term ¢,
{u : t =% u A usgr}, by nfg(t) (or just nf(t)).

A stable-head form of ¢ is a term u such that ¢t —* u and, if u &€ V, there is
no v with v —% v and hs(u) # hs(v). We denote the set of all stable-head forms
ofatermt, {u : t >*u A (u gV = =3,(u—*v A hs(u) # hs(v))}, by shfg(t)
(or just shf(t)).

A head normal form of ¢ is a term w such that ¢ —% u and there are no
term v, rewrite rule | — r if ¢ € R and substitution o such that v —% v,
v = lo and n(co). We denote the set of all head normal forms of a term ¢,
{u:t—=%u AN Fyimrifcero(u—5Hv AN v=1Io A n(co))}, by hnfg(t) (or just
hnf(t)).

Theorem 2.1.1 We have that t|, € hnf(t|;) for all m € pos(t) if, and only if,
t € nf(t).

We call a sequence t1,ta, ... of terms such that ¢; — g t;11 a rewrite sequence
of t1. A term t is strongly normalising if all rewrite sequences of ¢ are finite.

10 Chapter 2. Preliminaries

We write t —¢% if ¢ is not strongly normalising (i.e. if there is an infinite rewrite
sequence of t).

We define the essential positions of a rewrite rule p, notation esspos(p), to
be those positions of the left-hand side [of p that put restrictions on the terms
to which p can be applied. That is, all positions of function applications of [are
essential as well as positions of variables that either occur more than once in [or
occur in the condition of p. More formally, esspos is defined as follows.

esspos(l — rif ¢) = pos;(1) U
{m- 7" . wepos,(l) A (Hﬂueposv(l)\{ﬂ}(l|ﬂu =llz)V
l| € var(c))}

Note that one can argue that variables that occur in a condition do not necessarily
play an essential role in matching. For example, in the condition bV true the value
of b does not influence the value of the condition itself (assuming that n adheres
to standard logic). Although this is a valid argument, we use the above over-
approximation for practical purposes.

The following theorem expresses the use of essential positions; replacing sub-
terms at non-essential positions of a rewrite rule p does not affect the applicability
of p.

Theorem 2.1.2

Vier it cen(IINesspos(l = rif ¢) =0 =
Vo (3o (t =10 A n(co)) & 3-(tlpln =11 A nler))))

In this thesis we consider only a specific form of rewriting strategies. These
strategies are essentially top-down in that they examine the head symbol for every
term that needs to be rewritten and a continuation is determined by the unique
strategy that is given for that specific head symbol. Examples of such strategies
are innermost and just-in-time.

Sequential Strategy Rewriting

A sequential strategy is a list of integer sets and rule sets (i.e. sets with (names
of) rewrite rules) that describes the way a rewriter must rewrite a term with a
specific head symbol. This notion comes from [vW07] and is based on the notion
of strategies in [vdP01].

For example, [{1,3},{a, 8}, {2}] is a strategy for some function symbol f that
states that first arguments 1 and 3 must be rewritten, then rewrite rules a and
must be tried and finally, if both o and 3 do not match, the second argument must
be rewritten. Such strategies are usually required to be full and in-time [vdPO01].
A strategy for f is full if all argument indices (1,...,ar(f)) and rewrite rules of
f occur in it (at least once). It is in-time if each argument is rewritten before it
is required for trying a rewrite rule. An argument ¢; is required for trying a rule

2.1. Rewriting 11

p = flt1,...,t,) — rif cif i € esspos(p). We denote the strategy for function
symbol f by ¢(f).
To illustrate, let function if have the following typical rewrite rules.

o if(true,xyy) — oz
B if(false,z,y) — y
v: if(b,x,x) -

The strategy for innermost rewriting would be [{1,2,3},{«, 5,7}]. That is, first
rewrite all arguments and then try to apply one of the rewrite rules. A JITty
rewriter [vdP02], on the other hand, would typically use the (full and in-time)
strategy [{1}, {a}, {8}, {2}, {3}, {7}].

We typically only consider the first element of a strategy before we look at the
rest of the strategy. We therefore write I > s for the strategy s prepended with
index set I. Similarly, we write R > s for s prepended with set of rewrite rules R.
We write S for the set of all sequential strategies.

The semantics of sequential strategies is given as follows. Here rewrs : T — P(T)
and evaly : S x T — P(T). To cope with infinite reductions we use a fixed-point
definition (see Appendix A). We write hs™ for hs where variables are mapped to
some unique element | and we write ¢ for ¢ extended to include L such that
¢t (L) =). Also, we write app,(R,t) for {rc : | = rifc€ R A t=1lo A true €
rewrg(co)} and rewrfy(¢,I) for {¢ : Vier(i € pos(t) = (i) € rewrs(t|;))}.

rewr(t) = evaly(¢t(hs™(2)),1)

evals([], £) = {t}

evals(I > s,t) =, Uz/)Erewrf .0 evals(s, t[Y]r)

evaly(R>5,1) =5 Uyeapp, (r,e) T€WTs(1) if app(R,t) # 0
evals(R> s,t) =, eval(s,t) if app,(R,t) =0

The following corollaries? express that rewr, rewrites and, if the used strategies
are full and in-time, results in normal forms.

Corollary 2.1.3 For all termst and u such that u € rewrs(t) we have that t —* u.

Corollary 2.1.4 If, for sequential strateqy function ¢, it holds that <(f) is full
and in-time for all function symbols f, then we have that rewrs(t) C nf(t) for all
terms t.

Corollary 2.1.5 If, for sequential strateqy function ¢, it holds that <(f) is full
and in-time for all function symbols f, then we have that rewrs(t) = () implies that
t —% for all terms t.

2They follow from Theorems in Chapter 5.

12 Chapter 2. Preliminaries

Note that this definition of rewrs corresponds to the one of norm in [vdP01] if
one restricts it to the same setting (i.e. no conditionals, only one element in each
I and R and no infinite rewrite sequences).

Sequential Strategy Generation

Because one might not want to burden users with supplying strategies themselves,
we want to generate reasonable strategies from a given set of rewrite rules (i.e. one
strategy per function symbol). This is done by observing which arguments need
to be rewritten to be able to match a given rule. An argument that is needed for
matching by most of the rules is added to the strategy, indicating that it needs to
be rewritten first. In the case that all arguments of a rule that are essential for
matching are rewritten, this rule is added to the strategy. This process continues
until all rules and arguments are in the strategy.

More formally, let dep(p) be a function that returns the indices of the arguments
that need to be rewritten before matching rule p, i.e.

dep(f(t1,...,tn) — 7if ¢) = esspos(f(t1,...,tn) = rifc)N{i : 1 <i<n}

Also, let occ(i, R) be a function that returns the number of rules of a set R that
require argument i:

occ(i,R) =#{p e R : iedep(p)}

We denote the empty strategy with || and a set S of argument indices or rewrite
rules prepended to a strategy ! by S .. Here, >>. only adds S to [if S is not
empty (i.e. 0 >, 1 =1). A strategy for a finite set of rules Ry is generated with
strat(Ry, {1,...,ar(f)}), where strat(R, I) is defined as follows, for any set of rules
R C Ry and set of indices I (with I the set of argument indices not yet added to
the strategy so far and 1 the maximum quantifier):

strat(0,I) = I.|]
strat(R,I) = To.J>cstrat(R\T,I\J) ifR#0
where T ={pe R : dep(p)NI =10},
J={i i€l A occ(i,R\T) =Tjer occ(j,R\T)}

Theorem 2.1.6 For all sets Ry of rewrite rules for symbol f, we have that
strat(Ry, {1,...,ar(f)}) is full and in-time.

Note that this function can be improved by making J contain at most one
element. This avoids rewriting too much in rewrite systems like {f(c,z) —
t, f(x,d) — u} which otherwise results in a strategy that first rewrites both argu-
ments and then tries to apply rules. We have chosen to take the definition as it
is given because this is the way it was given in [vW07] and for the evaluation in
Chapter 6 the change showed no differences.

2.2. Compiling Rewriters 13

For the if above we can now calculate strat({c, 8,7},{1,2,3}). As all rules
depend on at least one argument, no rules will be added in the first step. And, as
both o and 3 depend (solely) on the first argument, this argument will be added
first. Thus we get 0 >, {1} > strat({e, 8,7}, {2,3}). Then, as the first argument
is now in the strategy, we can add « and 8. Doing so means that there is only
one rule left () and it needs both remaining arguments, which we therefore add.
This gives us 0 >, {1} >. {a, 8} >¢ {2,3} > strat({v},0). As only v remains
to be added we get 0 >, {1} > {a, B} >c {2,3} Be {7} >e O > 0 > [], which is
{1}, {e, 8},{2,3} {7}].

Our approach deviates from the just-in-time strategy as defined in [vdP01] and
used in [vdP02] in two ways. First of all, we do not require arguments to be
rewritten in order. This way we basically get the same strategy as before when we
permute the arguments of the if. We also do not preserve in any way the order in
which rules were specified by the user while just-in-time strategies would (as far
as a strategy allows this; i.e. where we have [...,{p1, p2},...], with just-in-time
strategies we would have [...,{p1},{p2},...] if p1 is specified before ps). The
possibility of using sets is mentioned in [vdP01], but not used due to the choice to
let norm be a function of terms to terms (instead of term to set of terms).

2.2 Compiling Rewriters

A straightforward implementation of a rewriter typically consist of several generic
methods. For example, one might have a method that uses some (simple) form of
a database to look up what strategy should be applied to a given term, a method
that executes a given strategy and a term, a method to match a given pattern to
a given term, etc. Due to this generic nature such implementations are typically
not very efficient.

The problem with these implementations is that a significant amount of the
running time is spent interpreting strategies, patterns etc. To overcome this,
one can use so called compiling rewriters® (as opposed to the interpreting
rewriters mentioned above). These compiling rewriters have specialised methods
for each operation they might need to perform. For example, a compiling rewriter
typically has a separate method for each head symbol that executes the strategy for
that symbol. Also matching is hard-coded because in such specialised functions
you have very specific moments where a particular rewrite rule is matched and
possibly applied.

One technique that is useful in implementing (not necessarily compiling) rewrit-
ers is that of using implicit substitutions. In certain fields (e.g. state-space
generation as discussed in Chapter 1) one often has the need to both apply a sub-
stitution to a term and then rewriting the result to a normal form. Because both
application of substitutions and rewriting require traversal of the given term, it is

3The term “compiling” is due to the fact that these rewriters typically generate and compile
code as initialisation and then use the generated/compiled code to do the actual rewriting.

14 Chapter 2. Preliminaries

hardly efficient to do this twice. With implicit substitutions you call the rewriter
with the original term and the substitution and as soon as the rewriter encounters
a variable, it applies the substitution.

Note, however, that the use of implicit substitutions puts some requirements on
the rewriter. Because a substitution can map a variable to another (or even the
same) variable, the rewriter must not apply the implicit substitution on a term to
which it has already been applied. For example, if o(z) = y and o(y) = ¢, then
zro = y but xoo = t. To avoid this, we require that the rewriter never rewrites
terms it has rewritten before. In Chapter 4 we discuss how to do the latter.

In this thesis we assume the following structure of a (compiling) rewriter. For
each function symbol f, there is one specialised rewrite function, rewrite, that
takes ar(f) arguments t1, ..., ¢, (r) and returns the normal form of f(t1,...,u(y))-
Besides the specialised rewrite functions, there is also one main rewrite func-
tion, rewrite, that takes a term and calls the appropriate specialised rewrite func-
tion for that term. In pseudo-code, this function looks as follows (where we write
arg;(f(t1,...,t,)) for t;, with 1 <i < n):

function rewrite(t : T)
if t € V then
return ¢
else
var f:F = hs(t)
return rewrite s (arg; (t), ..., arg,, s (t))

A possible implementation to efficiently obtain the function rewrite; for some f is
to use an array of specialised rewrite functions with function symbols as indices.
Accessing an element of such an array usually only requires one or two machine
instructions.

If one uses applicative terms, we assume that for each function symbol f there
are function symbols f; in the implementation for 0 < ¢ < ar(f). In this case
the only change needed to the code above is to add an additional if-statement
to check whether the head of the term is a variable or not. If it is, then the
return value would be z(rewrite(arg, (t)), rewrite(argy(t)),...). Also, in this case
the initial if-statement is no longer required as the else-part also works for the
case that t € V.

If one uses implicit substitutions, the case where t € V will have an additional
if-statement to determine whether a value should be substituted for ¢ (and do so if
this is the case). In the case that both implicit substitutions and applicative terms
are used, the case added for the applicative terms will contain another if-statement
to take into account the possibly substituted value for the head variable.

The following piece of pseudo-code corresponds to implementation of the main
rewrite function if both implicit substitutions and applicative terms are used. Here
we assume that o is the (global) implicit substitution which acts as the identity

2.2. Compiling Rewriters 15

for variables that do not have a value assigned to them and assume that variables
used as head in a function application have an arity and can be obtained with hs
(i.e. ar(z) is defined and hs(z(t)) = z).
function rewrite(¢ : T)
var h : FUV = hs(?)
if h € V then
var u: T = o(h)
var i/ : FUV = hs(u)
if ' € V then
return 1/ (arg; (u), . .., arg,.» (1),
rewrite(arg; (t)), .. ., rewrite(arg,, ;) (t)))
else
return rewritey, (arg; (u), . . ., arg,, 1 (u),
arg; (t), ..., arg..u)(t))
else
return rewritey, (arg; (t), . . ., arg,,(n)(t))

The implementation of a specialised rewrite function of symbol f consist of code
that corresponds to the strategy for f as well as code to perform the matching and
application of the rewrite rules occurring in that strategy. An example of such
an implementation is the following function for the addition with an innermost
strategy:

function rewrite (n,m : T)

n := rewrite(n)

m := rewrite(m)

if m = 0 then
return n

else if 3,/ cr(m = S(m’)) then

return rewrite(S(n +m’)) where S(m’) =m
else

returnn +m

For an innermost rewriter there is a “trick” to make rewriting significantly more
efficient. This trick avoids having to construct the term S(n 4+ m’) and doing
the consequent rewrites on the subterm n and m’ which are already in normal
form. The trick is to ensure that the arguments of the specialised rewrite function
are always in normal form (instead of rewriting them at the beginning of the
function). This means that the main rewrite function needs to ensure this by not
passing arg,(t) as argument but rewrite(arg;(¢)). It also means that instead of
writing rewrite(S(n +m’)) we can write rewriteg(n, m’).

For non-innermost strategies this trick does not work as an essential part of such
strategies is that some arguments need never to be rewritten. In Chapter 4 we

16 Chapter 2. Preliminaries

discuss how we can avoid unnecessary term construction and rewriting of rewritten
terms in general.

Chapter 3

Match Trees

3.1 Introduction

During term rewriting one of the most substantial activities is matching a term
against a pattern. Matching is therefore one of the main areas to focus on in the
pursuit of efficiency.

A straightforward implementation of matching tries the available patterns one
by one. Consider, for example, the following rewrite rules.

n+0 — n
n+Sim) — Sh+m)

Here a term ¢ could first be matched against n+0 and, if this match fails, afterwards
against n + S(m). If this term ¢ is of the form 0+ S(0) then this typically results
in the following steps.

1. Try pattern n 4+ 0

(a) Check that the head symbol of ¢ is a 4+. This is the case.

(b) Remember the first argument of this + (i.e. 0) as n.

(c) Check that the second argument is 0. This is not the case; match of
pattern n + 0 failed.

2. Try pattern n + S(m)

(a) Check that the head symbol of ¢ is a 4. This is the case.

(b) Remember the first argument of this + (i.e. 0) as n.

(¢) Check that the head symbol of the second argument is an S. This is
the case.

(d) Remember the argument of this S (i.e. 0) as m.

(e) Match of pattern n + S(m) succeeded with 0 for n and m.

18 Chapter 3. Match Trees

It is clear that steps 2a and 2b are redundant; the same activities have already
been done in steps la and 1b. This is the result of the overlap of the patterns
n+ 0 and n 4+ S(m) and it indicates some room for improvement. Note that the
names of the variables are not relevant; n 4+ 0 and n’ 4+ S(m) essentially have the
same overlap.

Another (but minor) drawback is that term ¢ is inspected twice. Depending on
the implementation details this might also be costly.

In order to take advantage of overlap in patterns and to ensure that a term is
only inspected once, some implementations (e.g. [vW07, vdBHKO02, Vit96]) use
some form of match trees. These match trees are automaton-like structures that
dictate how matching should precede. In the example above such a match tree
could be as follows.

e Check that the head symbol of ¢ is a +.

e If so, remember the first argument of this + as n and check whether
the second argument is 0.

e If so, pattern n + 0 matched successfully.
e If not, check that the head symbol of the second argument is an S.

e If so, remember the argument of this s as m; pattern n 4+ .5(m)
matched successfully.

e If not, no pattern matches.

e If not, no pattern matches.

With this tree we perform every step only once.

For this simple example the effect is perhaps not very significant, but functions
such as equality benefit significantly more from the use of match trees. Assume,
for example, a sort S containing the (constructor) elements sy, s, s3 and s4. To
define an equality function on S one needs 16 rules (for every pair in S x S).!
More generally, if sort S has n constructors, one needs n? rules. By combining
these rules into a specific tree structure, we can test for a match in the order of n.

Of course, we must also take into account the fact that these match trees must be
constructed from the rewrite rules. However, in typical settings the set of rewrite
rules is fixed. This means that construction of match trees can be done once (as
preprocessing) and its efficiency is therefore not so much relevant during rewriting.

The goal of this chapter is to give a relatively simple formal definition of match
trees that are suitable for efficient matching in a wide range of settings. To this
end we introduce one functions to construct match trees and one to match using
these match trees. We consider rules with nonlinear left-hand sides (i.e. left-hand
sides in which variables may occur more than once), conditional rules, applicative

1 Note that many languages allow for more compact notations by assuming an order on rules.
Such features are in general not safe when rewriting with open terms. See Section 3.3.3 for more
details.

3.2. Match Trees 19

rules (i.e. rules on terms with partial applications; e.g. f(z) and f(z,y) are both
allowed for one symbol f) and ordered rules.

This method of using match trees that we consider here is similar to the ones
used in the ASF+SDF [vdBvDH'01] rewriters [vdBHKO02] and ELAN [Vit96].
For rules with linear left-hand sides (i.e. left-hand sides in which variables occur at
most once), algorithms to create such trees can be found in [Pey87, Aug85, Sch88,
Mar92]. The one in [Sch88] is more similar to our approach in that it introduces
an intermediate language with constructs specifically tailored for matching while
the others are more ad-hoc translations to the final implementation language. The
construction of the match trees in [Sch88] is less intuitive than ours in our opinion.
This is due to the fact that they construct match trees directly from a set of rewrite
rules while we construct trees per rewrite rule and combine them afterwards.

Our match trees also allow nonlinear rules (at no additional runtime cost for
linear rules), conditional rewrite rules (also in [Sch88] and ASF+SDF), applicative
terms and priorities (often also available in a limited form in the others). Note that
in ASF+SDF nonlinear rules are also allowed, but converted to linear rules, which
requires additional side conditions to rules to express the nonlinear requirements.
This effectively means that matching (of the linear pattern) is performed before
checking the nonlinear requirements, instead of doing the latter during matching.
Which method performs better greatly depends on what is being matched (as well
as the precise implementation of matching).

3.2 Match Trees

We wish to introduce match trees as an alternative for matching rewrite rules
separately. The idea is that there is a function 7 to construct a match tree from
a set of rewrite rules R and a function g that matches ¢ using a match tree
T. Match tree T' can be seen as a "program” that is executed by u. With the
division construction and usage we can compute all relevant match trees once and
repeatedly use them during rewriting. As such, this construction only contributes
a constant amount to the performance of rewriting and is typically negligible.

To give a more precise definition of our goal, we consider the following specifi-
cation. We write M for the set of match trees, the concrete elements of which
are defined as we go along. Note that we only consider finite sets of rewrite rules
(i.e. F(R)), which is sufficient in practice.

Specification p, 7.
v:F(R) —-M
w:MxT— P(T)
Vrcrter((y(R),t) ={ro : l>r€R A t=lo})

That is, v applied to a set of rewrite rules R is a match tree. Using such a
match tree as argument of p together with a term ¢ gives the set of all results

20 Chapter 3. Match Trees

of possible applications of rules from R on ¢. Of course, in practice, we are only
interested in one result. What this single result should be depends on the specific
setting, however. For example, when imposing an order on rewrite rules (as in
Section 3.3.3) one typically only wants the “greatest” rules to be applied while
without such an order it is common to be satisfied with any arbitrary choice. We
therefore do not consider this choice at this moment.

Single Rule Match Trees

To get an idea of what kind of elements should make up match trees we look at the
straightforward matching of a single rewrite rule. Consider the following rewrite
rule:

remove(z, z >) — remove(z, 1)

An attempt to apply this rule to a term ¢ would typically follow the process
depicted in Fig. 3.1.

Note that this process uses a left-most depth-first traversal through the term ¢. A
characteristic of such a search is efficiently implementable with a stack containing
the information for resuming work on a term after considering one of its subterms.
This will therefore also be a core element of our matching function. Of course,
we could also use positions as in Fig. 3.1. In practice, however, the stack solution
seems to be a more obvious choice.

Instead of the left-most depth-first traversal one might also desire a different
kind of traversal. We do not consider such cases here, but the strategy trees of
Chapter 5 suggest that this might be useful. Also, if one desires a depth-first
traversal where the traversal order of the arguments can be determined solely on
the function symbol, then it is quite straightforward to adapt the method given
here.

So, reflecting the left-most depth-first traversal, we implement match function p
using a stack containing terms that will be matched using a match tree. Initially
this stack will only contain the term ¢ to be matched. We use the same notation
for stacks as for lists. That is, [t1,...,t,] is the stack containing terms t1,...,t,
where t; is at the top and ¢, at the bottom. We write ¢ > s for the stack s with
term ¢ added on top. We refer to the top of the stack as the current term. The
set of stacks of terms is denoted by S(T).

Besides the stack of terms, we also need a substitution to remember which
variables of the pattern are instantiated with which terms. Then, considering the
process in Fig. 3.1, we define the following (initial) match tree constructors. The
superscript 1 of S and M is to differentiate them from the final versions introduced
later.

o F(f,T,U), with f € F and T,U € M: check that the current term has
head symbol f. If this is the case, replace the top of the stack (i.e. the
current term) by its arguments (first argument on top) and continue with 7.
Otherwise, continue with U (without changing the stack).

3.2. Match Trees 21

Try to
apply rule
to term ¢

hs(t) =
remove?

x = th No match

|

no

yes
0 no
yes

Result:

L=t remove(z, [)

Figure 3.1: Process of trying to apply remove(z, z > [) — remove(z,1) to a term
e Si(z,T), with # € V and T € M: assign the current term to variable z,
remove it from the stack and continue with 7'

e M(2,T,U), with x € V and T,U € M: check that the current term is the
same as the value (previously) assigned to variable x. If this is the case,

22 Chapter 3. Match Trees

remove it from the stack and continue with 7. Otherwise, continue with U
(without changing the stack).

e R(t), with ¢t € T: return term ¢ as the result of a successful application.
e X: no match.

Note that at this moment the third arguments of F and M! are not really necessary
as they will always be X when matching a single rule. This will change when we
look at trees combining multiple rewrite rules.

This gives us the following initial definition of p. Note that the result is a
set per the above specification. In this definition we use auxiliary function p’ :
M x S(T) x (V. — T) — P(T) that takes a match tree, a stack of terms and a
substitution (as explained above) and “executes” the match tree.

Definition p. Let 7 be an arbitrary (but fixed) substitution (i.e. its value is not
relevant). The function y is defined as follows.

/’L(T’ t) = M/(T’ [tLT)

WEGT0), 0, 0) - 0

W(F(f,T,U),x > s,0) = WUz s,0)

W (F(f,T,U), f(t1,...,tn) > s,0) = p(Tyt1>...>t, > s,0)
M/(F(f7T7U)’g(tla ;tn) > ,O') = ,u’(U,g(tl,...,tn) >87U) lffyég
;L/(Sl(l‘,T),[,O') = 0

W(S (@ T).t b 5,0) = J(Ts0lw s f])

WML T.0). o) — 0

W MYz, T,U),t > s,0) = W(T,s,0) if o(x) =t
W (MY (2, T,U),t > s,0) = (Ut s,0) if o(x) #t
W R, [,0) = o)

w(R(t),t > s,0) = 0

w(X,s,0) = 0

The construction of match trees from rewrite rules is done by first constructing
the trees for each rule separately and then combining these trees. Constructing
a match tree for a single rule is quite straightforward and is done with function
71 : R — M which is defined as follows. Note that, similar to the definition of
above, we use an auxiliary function 1 : S(T) x T x P(V) — M. Tts first argument
is a stack of patterns (like the stack of terms above) and its second argument the
right-hand side of the original rewrite rule. As third argument it takes a set of
variables indicating the variables to which a value will have been assigned when
matching with this tree.

3.2. Match Trees 23

Definition «;. The function 7; is defined as follows.

Tl —r) = (1,70

({7 V) = R(r)

71($>8 V) = S'(z,7i(s,m, VU {z})) if x gV
vi(z > 8,7, V) = Mi(z,9,(s,m,V),X) ifrxeV
Yi(fp1,. o ypn) > s, V) = F(f,ivi(pr>...0pp > s, V), X)

To illustrate the use of v, and u we look at the following examples.

Example 3.2.1 We consider the rewrite rule remove(x,z > l) — remove(z,!)
once more. With v; we get the following derivation to a match tree for this rule.

71 (remove(, t> 1) — remove(z, 1))

+, ([remove(z, z &> 1)], remove(z, 1),)

F(remove, 7, ([z, 2 &> I], remove(, 1), 0), X)

F(remove, S*(z, v} ([> I], remove(x, 1), {z}), X)

F(remove, S (2, F(&>, 7, ([,], remove(x,), {z}), X)), X)

F(remove, S' (2, F(5>, M (z, 7/ ([1], remove(z, 1), {z}), X), X)), X)
F(remove, S! (2, F(5>, M!(z, SL(I, v, ([], remove(z, 1), {z, 1})), X), X)), X)

F(remove, S*(z, F(t>, M* (2, St (1, R(remove(x, 1)), X), X)), X)

This match tree is depicted in Fig. 3.2. Note the resemblance with Fig. 3.1.

Example 3.2.2 Taking the match tree from the previous example, we consider
applying rule remove(z,z > [) — remove(z,l) to the terms remove(t,[]) and
remove(t, [t]). First remove(t, []):

w(F(remove, S*(z, F(1>, Mt (2, S (1, R(remove(x, 1)), X), X)), X),

remove(t, []))

24

Chapter 3. Match Trees

right
F(remove)

left

G ®

R(remove(z, 1))

Figure 3.2: Match tree for rule remove(z, z >) — remove(z,)

w' (F(remove, St (z, F(>>, MY (z, S (1, R(remove(z, 1)), X), X)), X),

[remove(t, [])], 7)
1/ (S*(z, F(>, MY (, S} (I, R(remove(z, 1)), X), X)), [t, []], 7)
p! (F(>, M (z, S (I, R(remove(, 1)), X), X), [[J], 7z — 1])
X [0 7l = 1)

0

3.2. Match Trees 25

Next remove(t, [t]):

w(F(remove, S*(z, F(1>, Mt (2, S (1, R(remove(x, 1)), X), X)), X),
remove(t, [t]))

W' (F(remove, St (z, F(>>, MY (z, S (I, R(remove(z, 1)), X), X)), X),
[remove(t, [t])], T)

1/ (S* (2, F(t>, M (2, S' (I, R(remove(z, 1)), X), X)), [¢, [t]], 7)
p (F(>, M (2, S* (I, R(remove(z, 1)), X), X), [[t]], 7[x —])
(M (, S' (1, R(remove(w, 1)), X), [t, [I], 7l t])

p (S'(1, R(remove(x, 1)), [[Il, 7[z > #])

w (R(remove(z, 1)), [], [z — #][l = []])

{remove(z, 1) (r[z — #][l — [}

{remove(t, [])}

Of course, we need to be sure that these definitions really make sense.

Theorem 3.2.3
pn(l —r),t)={ro : t=lo}

Combining Match Trees

The next thing we need to do is combine match trees. We do this with the ||
operator. The goal of this operator, as expressed in the following specification,
is to construct a single match tree that can be used to simultaneously match a
term with both argument match trees. That is, if you consider a match tree as a
representation of a set of rewrite rules, the || operator on match trees corresponds
to the union on sets of rewrite rules.

Specification ||.
| : M xM— M

w(T U, t) = (T, t) U (U, 1)

26 Chapter 3. Match Trees

With this operator we can define « as follows.

Definition . Let ¢ be fixed choice function on sets of rewrite rules.

(@) = X
Y(R) = AR\ {«R)})I7(p)

Corollary 3.2.4 The above definition of v satisfies its specification.

Because we are now considering the case that a match tree represents more than
one rewrite rule, we must extend our match trees with some additional constructs.
First of all we now have to facilitate the situation where multiple rules can be
applied. We therefore extend R to also take sets of terms as its argument. Thus,
R(R) means that each r € R is a result of a possible application of a rewrite rule.

Also, because different rules might need to do different things for a certain
argument, we can no longer remove the top of the stack as soon as we have executed
an S' or M'. We therefore introduce S and M that only differ from S' and M! in
that they leave the stack unaltered. Because S and M do not remove the top of
the stack, we also need an extra construct N that does precisely this.

We then get the following extension of the definition of pu.

Extension p. The extension of p with S, M, N and R (on sets) is as follows.

W (S(z,T),[],0) = 0

w(S(@,T),t > s,0) = p(Tt>s0z—1)

W (M(z,T,U),[],0) = 0

WMz, T,U),t > s,0) = p(T,t1>s,0) if o(z) =t
W (M(z, T,U),t > s,0) = (Ut s, o) if o(x) £t
W(N(T), [],0) — 0

K (N(T),t > s,0) = W(T,s,0)

M/(R(R)ﬂ []70) = {t(f tte R}

1 (R(R),t > s,0) = 0

It is clear that S', M! and R (on a single term) are strongly related to these new
elements. To express this we first need to define equality on match trees such that
we can replace subtrees with equivalent trees. Note that this definition uses p’
instead of 1 as we want equivalent trees to be equivalent regardless of the context.

Definition =,.
T —p U< VSJ(/J/(T, 570) = :U‘/(U7 570))

With this equality we can now give the following properties that allow us to remove
every occurrence of the elements S', M! or R (on a single term) if desired (e.g. in

3.2. Match Trees 27

implementations or proofs).

Property 3.2.5 (S!S) SYz,T) =, S(z,N(T))
(M'M) MYz, T,U) =, M(z,N(T),U)
(rR) R(t) =u R({t})

When combining match trees there are several restrictions on the trees we con-
sider as arguments of ||. Instead of considering arbitrary match trees as argument
we restrict one of the arguments to the structures that are the result of 71 (mod-
ulo =,). This mainly means that trees are not allowed to have nodes with three
arguments (M, F) of which the third argument is not X. We refer to the set of all
such trees as M;. This obviously is sufficient for our needs (given the definition of
7)-
The reason we do this is because some cases are needlessly complex and will
not occur in practice. For example consider the combination of two F-trees (with

f#9):
F(f,T,U) | F(g, T",U")

Let us assume the head symbol of the current term is an f. This means that the
first tree wants to remove the current term and put its direct subterms on the
stack. However, the second tree wants no such thing; it wants to continue with
the current term and tree U’. In addition, it might be possible that, for example,
T = F(f,T",U"), which means we cannot just take a F of f first and within it
combine F(g,7",U’) with T and U. This would make 7" and/or U" unreachable
as, being a subtree of another F of f we already know whether f is the head
symbol.

It is possible to solve this, but this is needlessly complicated for the current
setting. Here we have that if a F(g,7’,U’) is (part of) the result of 71, then
U’ = X. We use this information to our advantage.

Also, we assume that the sets of variables used in both arguments of || are
disjoint. Of course, it is straightforward to establish this as equality of match
trees is preserved by a-conversion. (Note that S acts as a binder in match trees.)

Note that we only define || for the relevant cases. Situations such a R(R)||S(x,T')
should not occur. Also, we ensure that a certain “local” order is maintained to
facilitate the work in Section 3.4. This means that M comes before S, S before F.

Definition ||. Assuming that var(T) Nvar(U) = 0 for all T' || U, the definition of
|| is as follows.

X|| T = T

T | X = T

R(R) || R(R) = R(RUR)
S(z,T) || S(y, U) = S(@,T|S(y0))

(continued on next page)

28 Chapter 3. Match Trees

S(z,T) || M(y, U, X) = M(y,S(=,7T) || U,S(z,T))

S($7T) ” F(U, X) = S(va H F(fa va))

S(z,T) |N(U) = S(z,T|NU))

M(z, T, 7") || S(y,U) = Mz, T|S(y,U),T" || S(y,U))
M(z,T,T") | M(y, U, X) = M(z,T | M(y,U,X),T" || M(y, U, X))
M(z, T,T") | F(f,U,X) = M, T F(f,UX),T"| F(f,U,X))
M(z, T,T") [| N(U) = M(z,T[N(U),T" | N(U))
F(£,T.17) || S(z,U) = Sz, F(f,T.7") | U)

F(f,T.7) | M(z,U,X) = Mz, F(f,T.7) | U, F(f,T,7"))

F(T T,) H F(U, X) = F(f7T H U, T/)

FULT,T) || F(g,UX) = F(f,T.,T"| F(g,U,X)) if f#g
F(f.T,77) | N(U) = F(£,TIN"DW),T" || N(U))

N(T) || S(z,U) = S(@,N(T) || U)

N(T) [M(z,U,U") = M(»”C N(T) | UN(T) || U")

N(T) | F(f, U, X) = F(f,N=UN(T) | U,N(T))

N(T) [IN(U) = N(T'[|U)

Example 3.2.6 Lets look at the rewrite rules for the +. We recall the following
rules.

p1 n+0 - n
p2 n+S(m) — Sh+m)

The match trees corresponding to y!(p1) and v*(p2) are F(+, S*(n, F(0,R(n), X)), X)
and F(+, S*(n, F(S,S(m, R(S(n+m))), X)), X), respectively. With the above prop-
erties (and a-equivalence) we have that these match trees are equivalent to the
match trees F(4,S(n, N(F(0,R({n}), X))), X) (as depicted in Fig. 3.3a) respectively
F(+,S(n',N(F(S,S(m,N(R({S(n" +m)}))),X))), X) (as depicted in Fig. 3.3b). We
combine these match trees to get a single match tree for both rules.

R({n}), X)), X) |l
F(+,S(: ((,S(m,N(R({S(n’+m)}))),x))),x)

3.2. Match Trees

ot E right

CONONECDNC
)

left

2
)

2

(=)

=2

(=)

S(
) right
@O) right SDi
left

left

R({n}) @m)
()
R({S(n' +m)})
(a) v (p1) (b) v (p2)

Figure 3.3: Match trees for p; and po

30 Chapter 3. Match Trees

F(+4,S(n,S(n’, N(
F(0,R({n}),
X
F(S,S(m, N(R({S(n" + m)}))), X)

), X)
F(+,5(n, S(n, N(F(0, R(n), F(S, S(m, N(R({5(n" + m)}))), X))))), X)
This tree is depicted in Fig. 3.4

Note that the result of || is not optimal. The variables n and n’ are always assigned
the same value. In Section 3.4 we discuss optimising match trees.
Again, we must make sure the || function is actually sound with respect to .

Theorem 3.2.7

Vremven ter((T || U, t) = u(T,t) U (U, 1))

Note that in Appendix C.4 we actually prove this theorem including the exten-
sion that follow (in particular the one in Section 3.3.2). It is easy to check that
with these extensions all possible combinations are taken care and preserve the fact
that the right-hand side of || should be in M;. This means that || is well-defined
over the domain M x Mj.

Also note that this means that we do not really know that combining two match
trees with the constructors introduced so far results in a match tree that also only
consists of those nodes. We would be surprised if this is not the case, but we have
not investigated this at this time.

3.3 Extensions

In this section we consider several extensions to match trees. First we make an
extension for conditional rewrite rules, then we look at matching applicative terms
and finally we consider priorities on rewrite rules.

3.3. Extensions 31

right

DD

left left

R({n}) @@

(=)

R({S(n +m)})

Figure 3.4: Match tree for {p1, p2}

3.3.1 Conditional Rewrite Rules

To also allow conditional rewrite rules we extend the specification of i and ~ as
follows. Note that we assume the condition evaluation function 7 is given.

Specification pu, 7.

wy(R),t)={ro : l-reRANt=Ilo}U{ro : l -rifce RAt=Ilo A n(co)}

32 Chapter 3. Match Trees

To reflect this addition in the match trees we need a way to establish whether 7(¢)
holds for terms ¢. We do this by introducing a construct C(¢t,T,U) that is defined
as follows.

Extension u.

W (Ct, T,U),s,0) = p'(T,s,0) if n(to)
().s,0) = p(Us,0) if =n(to)

The extension of v; is also quite straightforward. We only need to add a parameter
to the auxiliary function 7 for the condition of a rewrite rule and add a C before
returning a result.

Extension ;. The extension of ; with conditional rewrite rules is as follows.

(I — 7rif ¢ = Y ([l],r,c,0)

Yi(llire, V) = C(¢,R(r),X)

'y{(xl>srcV) = 1(,'y(srcVU{x})) ifxgV
yi(x > 8,70, V) = M(z,7,(s,r,¢,V),X) ifexeV
'71((pla---apn)strqu) = F(fﬁi(Pl>~--|>pn>3a7“acvv>vx)

To show that this extension is sound we have the following theorem.

Theorem 3.3.1
pwn(l —rife),t)={ro : t=1o N n(co)}
Finally we must extend || as well. This means we must also reprove Theorem 3.2.7.

Extension |. Assuming that var(7) Nvar(U) = 0 for all T'|| U, the definition of
|| is as follows.

Ct,. .7\ U = CT|U1|U)
T|CtUX) = CtT|U7T) if 3,770 (T = Clu, T', T"))

3.3.2 Adding Applicative Terms

In higher order settings one typically allows applicative terms: function symbols
are regarded as terms and an application operator allows terms to be applied to

3.3. Extensions 33

terms. A term f(x,y) in this setting is actually the term f(z)(y). We keep using
the notation f(x,y) though. The only difference with before is that the number
of arguments that is applied to a function symbol can be less than its arity.

Note that with applicative terms it is allowed to write z(t), where z is a variable.
For sake of simplicity we do not allow such terms in the left-hand side of rewrite
rules. We have not found this to be a limitation in practice.

To keep the notion of arity sensible we assume that it is possible to give a
non-recursive type system for our applicative terms such that the left-hand and
right-hand sides of each rewrite rules have the same type. This effectively means
that it is not possible to have a rewrite rule such as g(f(z,y)) — g(f(x)).

Due to the fact that the head symbol of a left-hand side of a rewrite rule might
have a greater arity then its number of actual arguments, we have a slight difference
in the notion of matching. Before we said a pattern p matches a term ¢ if there
is a substitution o such that ¢ = po. However, with applicative terms it might
be that case that pattern p has a different number of arguments than term ¢. For
example, with rewrite rule f — g we wish that term f(¢) rewrites to g(t). We
therefore extend the notion of matching as follows. A pattern p matches a term
t if, and only if, there is a sequence of variables z1,...,z, and a substitution o
such that ¢t = p(z1,...,2z,)0.

Finally, we must consider how to represent the change in terms in the match
trees. Recall that in the definition of || we have an equation F(f,T,T") || N(U) =
F(f,T || N&(U), T" || N(U)). Of course, this no longer suffices because the arity
of a function symbol no longer corresponds to the number of arguments such a
function has in a term. One option is to extend F to include a number indicating
the expected number of arguments. However, for sake of simplicity, we choose
another solution. For each F node that is the result of] we can easy get the
expected number of arguments by looking at the head of the first arguments of
v{- So we can trivially annotate such nodes with this number and use it when
combining trees. Due to our typing assumption we know that it is not possible that
we need F(f,T,U) || F(f,T’,U’) where both F nodes are annotated with different
numbers. That is, except for the very first node of v], but there we never encounter
F(f,T,U) |IN(T") as we do not allow rules of the form z — ¢. Note that we do not
explicitly write down the annotations in the examples.

One has to adapt the p function slightly such that an annotated function symbol
will match with an unannotated function symbol. We do not explicitly do this here.
Also, we will assume in the rest of this chapter that sets of rewrite rules have been
adapted to include annotations.

With all this we get the following specification for u, and ~.

Specification p,,".
fa : M x T — P(T)

a(Y(R),t) ={r(z1,...,2p)0 : l>r € R AN t=1(x1,...,2,)0}

34 Chapter 3. Match Trees

We can now derive the following.

pa(Y(R),t)
{ Specification p,,v }

{r(z1,...,zn)0 : l=r€R AN t=1(x1,...,25)0}
{ Extend R }

{r(z1,...,2p)0 : U1, 2n) = 7(21,...,2,) €
{{y1y---syn) = (W1, yyn) : L>r €RY ANt =1(21,...,20)0}
{ Calculus }

{r'e : ' =r" e{lly1,...syn) = 7(y1,...,yn) : Ll =reR} Nt=10c}
{ Specification u,~ }

pO{Uy1s - yn) = (Y1, yn) 1 Lo € RY)LE)

In other words, we don’t have to change much about our match trees to be able to
match applicative terms; extending the input is sufficient for the match function
. The only thing that we must take care of is combining match trees that expect
a different amount of arguments.

Note that in general the number of variables that need to be added is bound by
the arity of the function symbol. That is, if you add more variables to a pattern
than its head symbol can take as arguments, then the pattern will never match.
Also note that the extension of the input with conditional rules follows the same
lines.

Before we give the required extensions to match applicative terms, we look at
the precise problem we are facing here. Consider the following rewrite rules:

fi: f
far f(x)

We get the following match trees for these rules:

my, : F(f,R(9),X)
my, : F(f,5(z,N(R(g()))), X)

When calculating m , |[m s, one encounters the term R(g)||S(z, R(g(z))). Currently,
|| is not defined on this case. The reason is that R expects the stack to be empty
while S expects the stack to contain at least one item.

In previous settings this situation could not occur due to the fact that all trees
matching a specific function would expect the same number of arguments. Now
that this is no longer the case we must extend the match trees with another
construct. We introduce E with two argument: one for the case that the stack is
not empty and one for the case that the stack is empty. Note that an equally valid
choice would be to extend the nodes we already had with an additional argument.
We add E only because it has less impact on the work that has already been done

—
—

g9(z)

3.3. Extensions 35

and we believe it to be conceptually nicer. This gives us the following extension
to p.

Extension u.

W (E(T,U),[],0) = w(U o)
W(ET,U),t>s,0) = (T ,t>s,0)
We then get the following extension to ||.
Extension |.
R(R) || S(z,T) = E(S(z,7),R(R))
R(R) || M(z, T, X) = EM(z,T,X),R(R))
R(R) || N(T) = E(N(T),R(R))
FILT,TIR(R) = E(R(S,T,77),R(R))
S(z,T) || R(R) = E(S(z,T),R(R))
M(z,T,T") | R(R) = EM(z,T,7"),R(R))
N(T) || R(R) = E(N(T),R(R))
E(T,T") || R(R) = E(T.T|R(R))
E(T,T) || F(f,U,X) = ET[F(/,U,X),T)
E(T,T)||S(z,U) = ET|S(xU),T")
E(T,T') | M(y, U, X) = E(T|M(y,U,X),T")
E(T,T") [IN(U) = ET[N@),T)

By extending || we need to reprove Theorem 3.2.7.

Example 3.3.2 Consider the following specification of + (where id is the identity
function).

+(0) — id

Sn)+m — Sh+m)

This gives us the match trees F(4, F(0,R({id}), X), X) for the first rule as it is,
F(+,F(0,S(n’,N(R({id(n)}))), X), X) for the first rule with an extra argument and
F(+,F(S,S(n,N(S(m,N(R({S(n + m)}))))),X),X) for the last rule. Combining
them gives the tree as depicted in Fig. 3.5.

3.3.3 Adding Priority

In settings where only closed terms are rewritten, it is common to impose an order
on rewrite rules. For example, one would have the following two rules for equality.

eq; r=x — true
eq, x=y — false

36 Chapter 3. Match Trees

left
right
<§§j®m <§§>
left left
Gty D) ()
left

D G
W G

R({S(n +m)})

\vju

N

Figure 3.5: Match tree for applicative +

Without order, the second rule (eqs) would lead to unexpected results as terms of
the form ¢t = t fit the pattern z = y as well as the pattern x = z. By imposing
the order eq, < eq;, one enforces the application of rule eq; for terms of the form
t=1.

Priority is an effective way to reduce the number of rewrite rules and improve the
efficiency of rewriting. Compare for example the rules above with rules without
order; for a sort with n constructors one typically needs n? rules. With match
trees we can combine these rules in a structure that allows O(n) matching, but
this is still a factor n bigger than with the two rules above. Even if n is small,
repeatedly matching the same rules (as is often the case in rewriting) still means
that this factor n has an significant effect on rewriting terms in general.

As mentioned before, in the setting of open terms rewriting the notion of priority

3.3. Extensions 37

is not so useful. A partially instantiated term like z = 0 would be rewritten to
false regardless of the possibility that x is latter (outside of rewriting) instantiated
with 0. Of course, it is possible to circumvent this by adapting the matching and
application process. We are not aware of such an implementation.

Note that rewriting with priority as described here is not quite the same as pri-
ority rewriting [BBKS87]; priority rewriting prohibits the use of a rule if a greater
rule can be applied on the top level (possibly by first rewriting subterms). The no-
tion of priority we consider here is that only when multiple rules can be applied at
the same position (in this thesis the top level), then we use the order to determine
which rule is applied.

More formally (and generally) we have the following. Let ¢ be a function on
sets of rewrite rules such that ¢(R) C R and ¢(R) = 0 if, and only if, R = (). This
means that for every set of rewrite rules, ¢ defines the set of rules that have the
highest priority. Then we have the following specification.

Specification .

pp : M x T — P(T)
¥:F(R)—-M

pp(F(R), o, t) ={ro : t=lo Nl—rep({l'! >r"eR : t=10})}

We observe that this specification does not really require any significant changes
to the match trees; only when returning a result it is necessary to only return those
results that are from the application of a rewrite rule with the highest priority. In
other words, if we can, in some way, apply ¢ to the R nodes of a match tree, then
we do not need a specific matching function for these rewrite systems.

There is only one small problem: the R nodes only contain right-hand sides of
rewrite rules and this is not sufficient to determine the right-hand sides of the same
rules after ¢ is applied. For example, consider the node R({r,7’}) and assume that
o({ly >l ="} ={l1 = r}and p({ly — r,I’ = r'}) ={l' = r'}. Depending
on the origin of the r in the argument of R we either want R({r}) or R({r'}).

To overcome this problem we introduce a new node R’ that takes a set of rewrite
rules instead of just right-hand sides of rewrite rules. The extension of p with this
node is as follows:

Extension u.

S
!

1 R {ro : l—reR}
W(RI(R),t>s,0) = 0

Which trivially gives us the following property.

Property 3.3.3
R(R)=,R({r : l > r€R})

38 Chapter 3. Match Trees

We then define 7, 7, and %] in the same way as v, y; and 7} with the exception
that the second of argument of] is a rewrite rule, 7, (I — r) = 7, ([{],] — r,0)
and ¥, ([}, p,V) = R'({p}). Also we extend || by adding the same rules for R’ as
for R. Note that this means that we trivially have that J(R) =, v(R).

What remains is a function prior to apply ¢ to match trees, which is defined as
follows.

Definition prior.

prior(X, ¢) = X

prior(F(f,T,U), ¢) = F(f,prior(T, ¢), prior(U, ¢))
prior(S(z.T),¢) = S(z, prior(T,)
prior(M(z,T,U),p) = M(z,prior(T,p), prior(U, ¢))
prior(C(¢t,T,U),) = C(t, prior(T,), prior(U, ¢))
prior(N(T),p) = N(priox(T, ¢))

prior(R'(R), ¢) = R{r:l—-reypR)})
prion(E(T,U),9) = E(prior(T,), prior(U],)

To show that this indeed does what we want, we have the following theorem.

Theorem 3.3.4
Np (W(R)v P, t) = /L(pI‘lOI‘(i(R), 90)3 t)

In other words, adding priority with a function ¢ can be done by simply applying
prior to the match tree and this ¢.

Example 3.3.5 We look at the example of the equality. We recall the following

rules:
eq; r=x — true

eq, =y — false

These rules have the following match trees (as depicted in Fig. 3.6):

Meq, F(=,S(z, N(M(z, N(R({eq, })), X))), X)
Meq, F(=,5(2",N(S(y, (({eqz}))))) X)

Our priority function is defined by ¢(S) = S if {eq;,eq,} € S and ¢({eq;, eqy} U

S) = {eq;} U (S \ {eqs}). After combining both these trees we get the tree

T = F(=,5(z,5(z",N(S(y, M(z, N(R({eq;, eqy })), N(R({eqs }))))))), X) (Fig. 3.7a).

(T;}engr;g;(ﬂ ¢) = F(=,5(x, (2, N(S(y, M(z, N(R({true})), N(R({false}))))))), X)
ig. 3.7b).

3.4 Optimisation

As we have observed in the previous section, the match trees generated by ~ are
typically not optimal. They assign one term to multiple variables, check certain

3.4. Optimisation 39

Fo) right Fo) right @
left left

G O G
O O
@I) right 6)
(™) O

R({ea}) R({eqz})

(a) y1(eqy) (b) 71 (eqs)

=

<

=2

Figure 3.6: Match trees for eq; and eq,

things multiple times etc. In this section we focus on manipulation of match trees
in order to get better performance.
The most desirable path would be to establish a notion of optimality and give
a method to convert any tree to its optimal equivalent. However, their might be
more than one optimal equivalent match tree. Consider, for example, the following
trees.
M(z, M(y,T,U),M(y, V., W))

M(y, M(z, T, V), M(z,U, W))

Virtually any (sensible) measure on match trees will equate both trees. Only if
the order in which values of variables are accessed is significant and taken into
account (e.g. because they are stored in linked lists for some reason), it is possible
to say that one is better than the other.

Of course, it is fairly simple to impose an (arbitrary) order on the variables (sim-
ilar to what is done with Binary Decision Diagrams). One does have to consider

40 Chapter 3. Match Trees

@ 2) right @ 2) right

R({eq;,eqs}) R({eqay}) R({true}) R({false})
(a) v({eqs, eqs}) (b) prior(y({eq;,eqs}), ¢)

Figure 3.7: Match tree for {eq;,eqs}

when such an order should be used. In the above solution the choice might not
effect the performance, but if one imposes this order on all M nodes it might have
undesirable consequences. This can clearly be seen by the following equivalent
trees, where by changing x to y and vice versa one can change which one is the

3.4. Optimisation 41

optimal tree.
M(z, M(y, T,U),V))

M(y, M(z, T, V), M(z, U, V)

In most situations one would expect the first tree to be preferred above the second
one.

Besides there not necessarily being a unique optimal representation, which is in
itself not directly a problem, there are some more troublesome issues with defining
a good measure on match trees. One of them is how to value a C node. Because
executing a C typically requires rewriting a term, it is very hard to estimate the
precise cost (time-wise). Typically, rewriting is very expensive which suggests to
postpone a C as long as possible. However, it might very well be the case that an
early C can actually avoid unnecessary computation. An extreme example would
be the following:

T — 0 if true

flg(c.) h(k(..),..0),...) — t iffalse

The same holds for M to some extent as well if establishing (in)equality of terms
is expensive. However, M nodes have significantly less freedom of “movement”.
Finally, consider the following two (equivalent) match trees.

S(, N(S(y, M(z, N(R({f (2, 2) })), N(C(g (2,), R{f (y, 2)}), RS (2, 9)})))))))
S(a, N(S(y, N(Cg(z,), RU S (y, 2)}), REF (=,9)1)))))

The second tree has one less M, but at the cost of always having to execute the
C node. Even if one has a suitable order on these trees, the task of obtaining one
out of the other is far from trivial. This would involve adding temporary nodes
and non trivial substitutions (e.g. changing f(z,z) to f(x,y)[y/z]).

Instead of searching for optimal results, we focus on eliminating the most obvious
inefficiencies. In order to do so, we first investigate the structure of the result of
~v. We can make the following observations:

1. Trees consist of segments; each segment takes care of a specific subterm. The
borders are indicated by N nodes or the first argument of F nodes (i.e. those
places which result in a change on the stack and thus a change in the current
term).

2. Each segment consists of C, E M, S and F nodes (in that order and at most
one E) and finally an X, N or R. The latter node can only occur first, as
argument of C or as right argument of E.

For example, in the tree S(z, F(f, M(z, N(R({t})), X), F(g, R({u})), X)) we have seg-
ments S(x, F(f, ,F(g, ,X))), M(z,N(),X), R{t}) and R({u}). Next we observe
some equivalences between trees:

42

6.

Chapter 3. Match Trees

. Multiple S nodes within a segment are not needed; each variable is assigned

the same value.

. An F(f) in the right alternative (and same segment) of another F(f) will

result in the former always choosing its right alternative. This means that
such an F can be eliminated.

The same holds for M(z) nodes within M(x) nodes.

Nodes M and C with the same tree as left and right argument can be elimi-
nated.

S(x) nodes can be eliminated if its subtree does not contain the variable x
(unbound).

An E node can be eliminated if one of its subtrees is X

Taking these observations in to account, we want to convert each tree into an
equivalent tree that adheres to the following.

1.
2.
3

4.
o.
6.

An S node has no S node below it within the same segment.

An M(z) node has no M(x) node below it within the same segment.

. An M(f) node has no M(f) node below it within the same segment.

Nodes M and C do not have the same tree as both left and right argument.
Each S(x) is useful. That is, x occurs (unbound) in its subtree.

No E node has X as a subtree.

The first three points are taken care of by the function reduce. The last three
by function clean. These functions are defined as follows. Here reduce itself just
traverses a tree and calls the reduceg, reduces and reducey to take care of the
blocks of F, S and M nodes, respectively. The second parameter of reducef is to
keep track of the function symbols we have seen (and are not the head symbol of
the “current term”). In reduces the second argument is a set of variables for which
we have encountered an S node and which will all be renamed to one particular
variable in the end (with [x/V] as defined below). The two extra arguments of
reducem keep track of the variables that have been checked (against the “current
term”) and according to the result of this check (i.e. M; for variables that were
equal and M/ for those that were not).

3.4. Optimisation

43

Definition reduce. The definition of reduce is as follows.

reduce
reduce

X)
F(f,T,U))
S(z,T))
U))
U))

T,
)
T,
C(¢, T,
N(T))

E(T,U))
R(R))

(

(

(S(x
reduce(M(z,
reduce(
reduce(
reduce(
(
reduceg(X, F)
reduceg (F(f, T,
reduceg (F(f, T,

) F)

U
U), F)

reduceg(N(T), F)

reduces (X,)

reduces(X, {z} UV)

reduces (F(f,T,U), ()
reduces(F(f,T,U),{z} UV)
reduces(S(z, T),V)
reduces(N(T),)
reduces(N(T), {z} U V)
reducem (X, S, My, My)
reducem (F(f,T,U), My, My)
reducem (S(z,T), My, My)
reducem(M(z, T,U), My, My)
reducem (M(z, T, U), My, My)
reducem (M(z, T, U), My, My)

reducem (N(T), M, My)

X[z/V]
F(,T,0)[z/V]
S(a, T)[y/V]
M(z, T, U)[y/V]
M(z, T, U)ly/V]
Ct,T,U)[z/V]

N(T)[z/V]
R(R)[z/V]

X
reducer (F(f,T,U),0)
reduces (S(z, T), 1)
reducem(M(z, T, U), 0, 0)
C(t, reduce(T), reduce(U))
N(reduce(T))
reduce(T),

E(
R(R)

reduce(X)

reduceg (U, F)

F(f, reduce(T),
reducer(U, F U{f}))

reduce(N(T))

reduce(U))

if feF

if fgF

reduce(X)
S(x,reduce(X[z/V], 1))

reduceg (F(f, T,U), D)
S(x,reducer(F(f,T,U)[z/V],0))
reduces(T,V U {x})
reduce(N(T"))

S(x, reduce(N(T)[z/V]))

reduce(X)

reducer (F(f,T,U),0)

reduces(S(z, T), D)

reducem (T', My, My)

reducem (U, My, My)

M(z, reducem (T, My U {z}, My)
reducem (U, My, My U {x}))

reduce(N(T))

if x e My
ifl’€Mf
/\;CﬁMf

M X

(f, T[z/V],Ulx/V])
S(a, Tly/(V\ {x})])
M(y, Tly/V],Uly/V])
M(z, Tly/V],Uly/V])
Cltle/y : yeV],
Tla/V],Ulz/V])
N(T[z/V1])
R(R[z/y : yeV])

ifxeV
ifegV

44

Chapter 3. Match Trees

The clean function uses an auxiliary function clean’ that returns a pair of the
“cleaned-up” tree and a set of the unbound variables in this tree. The latter is
used to remove unnecessary S nodes.

Definition clean.

clean(T)

clean’(X)
clean’(F(f,T,U))

clean’(S(z,T))
clean’(S(z,T))

clean’(M(x, T, U))

clean’(M(z, T, U))

clean’(C(t,T,U))

clean’(C(¢, T,U))

clean’(N(T))
clean’(E(T,U))

clean’(E(T,U))

clean’(E(T,U))

clean’(R(R))

The definition of clean is as follows.

T/

(X,0)
(F(f,T'.U"),VUW)

(S(z, 1), V\ {z})
(T, v)

(T, v)

(M(z, T",U"),VUW U {z})

(T",V)

(Ct,7,U7),
VUW Uvar(t))

(N(T"), V)
(1", V)
u,w)

(E(T",U"),VUW)

(R(R), var(R))

if (T",V) = clean’(T)

" V) = clean(T) A
W) = clean’(U)
) = clean’(T") A

“<<"<

) = clean’(T') A

v
T', V) = clean’(T) A
W) = clean’(U) A

T =U
if (T",V) = clean’(T) A
(U, W) = clean’(U) A

T 75 o
if (T",V) = clean’(T) A
(U’ W) = clean’(U) A

T =U

if (T",V) = clean’(T) A
(U, W) = clean’(U) A
T ;é U’

if (T", V) = clean’(T)
(T', V) = clean’(T) A
(X, W> = clean’(U)

if (X, V) = clean’(T) A
(U, W) = clean(U)

if (T",V) = clean’(T) A
(v’ '

W) = clean’ (U) A
X

T AU #X

To illustrate the use of these functions we look at the following example.

3.4. Optimisation 45

Example 3.4.1 Consider the rules of Example 3.3.5. In Fig. 3.8 the process of
applying reduce and clean is depicted. Figure 3.8a depicts the match tree before
reductions, Figure 3.8b depicts the same tree after application of reduce and in
Figure 3.8c also clean has been applied.

e
5
G
o
G G
OO

R({true}) R({false})

(a) prior(y({eqy,eds}), f)

Figure 3.8: Optimisations for {eq;,eq,}

The function reduce and clean are sound, which is stated in the following theo-
rems.

46 Chapter 3. Match Trees

FO) right @

@ 2) right

(b) reduce(prior(vy({eqs; eqz}), f))

Figure 3.8: Optimisations for {eq;,eqy}

Theorem 3.4.1. reduce(T) =, T
Theorem 3.4.2. clean(T) =, T

Of course, there are many more improvements that can be made. For example,
it might be useful to introduce a node N(n,T) that is equivalent to N*(T"). Also,
it is possible to remove S nodes that occur in left arguments of M(z) nodes; in this
left argument one knows that the value assigned to x is equal to the current term,

3.4. Optimisation 47

@ 2) right

left
() ()
R({true}) R({false})

(c) clean(reduce(prior(y({eqy,edqs}),)))

Figure 3.8: Optimisations for {eq;, eq,}

so there is no need to assign this value to another variable.

To avoid long sequences of F nodes that try a large number of function symbols,
one can introduce a node F(y), where ¢ is a function mapping function symbols to
match trees. In practice we expect this to be mostly useful at the top level. This
effectively means that one groups all rewrite rules by the head symbol of their
left-hand side and has a quick lookup (e.g. an array) to get the match tree for a
given function symbol. At other levels we expect this method to be too expensive

48 Chapter 3. Match Trees

(in terms of memory) in general.

Note that we have done very little with C nodes (i.e. we only remove such a node
if its subtrees are the same). These nodes can easily be “moved” around the tree
(as long as they do not cross a capturing S). Also, there are a number of trans-
formations that can be done based on the condition itself (e.g. adding/eliminating
negation by swapping subtrees and splitting/merging C nodes using conjunctions
and disjunctions in the conditions). As discussed before, it is not always clear
what is most desirable.

Chapter 4

Temporary-Term
Construction

4.1 Introduction

Besides using efficient strategies and matching, there is another important aspect
of rewriting where significant gains in performance can be made. With each appli-
cation of a rewrite rule one needs to construct a new term based on the right-hand
side of the applied rule. We call these terms temporary terms. In constructing
these terms, we can apply various optimisations. A simple example of such an op-
timisation is that instead of constructing a term f(¢) and then calling the rewriter
on this term, we can also construct just ¢ and directly call the specialised rewriter
for function symbol f with ¢ as its input.

One of the most significant optimisations is to add information to terms to be
able to avoid rewriting terms that are already rewritten before. To illustrate, we
consider again the addition (+) with the following rewrite rules.

n+0 — n
n+Sim) — Sh+m)

It is clear from these rewrite rules that both arguments of the + will always be
(directly or indirectly) rewritten to normal form. So let us assume a strategy for
+ that first rewrites both arguments to normal form and then tries to apply the
above rules. If the second rule is applied, we get a term of the form S(n+m) where
we know that n and m are in normal form. However, the first thing that happens
when rewriting the subterm n + m is that both n and m are rewritten to normal
form. Even though they are already in normal form, we still have to reestablish
this as this information is not explicitly available. By adding annotations to terms
we can make such information explicit.

Another optimisation is to avoid constructing temporary terms of which one

50 Chapter 4. Temporary-Term Construction

knows that they will be rewritten later on. In such a case it might be advanta-
geous to rewrite immediately without constructing the temporary terms. Take,
for example, the following rewrite rules for a function symbol f: f(0) — ¢ and
f(S(n)) = h(n). A typical strategy will always rewrite the argument of f before
trying to apply a rewrite rule. This means that if we are constructing some tempo-
rary term f(k(z)), we already know that the first thing that will happen to such a
term is that k(z) will be rewritten. Thus, instead of constructing this temporary
(sub)term, we can just as well immediately rewrite k(x) to its normal form ¢ and
then rewrite f(t). As we can directly call a specialised rewrite function for head
symbol k, supplying x as argument, there is no need for the explicit construction
of the term k(x).

Finally, we also use the fact that some functions have no rewrite rules at all and,
if applied to normal forms, lead to a normal form themselves. Consider, for exam-
ple, the rewrite rule f(g(x)) — h(k(z)) and assume that before application of this
rule the rewriter will always rewrite the argument of f first. In this situation, the
right-hand side of the rewrite rule, h(k(x)), would be used to create a temporary
term which is annotated such that it is known that the value substituted for x is
in normal form. However, if k£ has no rewrite rules, we can actually annotate the
temporary term to indicate that the whole argument of h is in normal form.

An important aspect of these optimisations is that they can influence which
normal form(s) the rewriter returns for a given term. By adding annotations
to terms, it is possible (and often useful) to make rewrite strategies in such a
way that they take into account these annotations. For example, if you have
the term if (¢, u,v) annotated in such a way that we know that w and v are in
normal form, then it is useful to first try to apply the rules if (b, 2, 2) — z instead
of first rewriting ¢ to normal form and then trying the rules for if. Doing so,
however, means that due to the annotations different rules are applied and thus,
possibly, other normal forms are obtained. Note that using knowledge about
constructor functions and rewriting subterms earlier both influence the annotation
in the eventual temporary term (and thus the outcome of rewriting).

Note that these techniques are mainly useful for non-innermost strategies. Es-
sential argument detection is trivial as all arguments are always rewritten and
normal form annotations can be avoided by using the “trick” discussed in Sec-
tion 2.2.

In this chapter we look at how we can implement the above optimisations for
sequential strategies. First we introduce function annotations for normal form
information in Section 4.2. Then, in Section 4.3, we give a construction algorithm
that is suitable for all of the above optimisations. Finally, we give a method to
determine which arguments of a function will always be rewritten in Section 4.4.

4.2. Annotations o1

4.2 Annotations

An annotation is a set of indices that occurs as superscript of a function symbol.
We add such annotations in terms to indicate which (sub)terms are known to be
in normal form. For example, we will use f{2}(¢,u) for the term f(t,u) if we know
that v is in normal form. Note that we only annotate those function symbols that
are themselves not part of a normal form; this information is already implied by
annotations of the term that contains this normal form as subterm.

Of course, the input and output of a rewriter must still be unannotated terms.
The way we assure this is to implement the rewriter in the following way. When
an unannotated term needs to be rewritten, we do not — and can not — assume
anything about this term. The only thing to do with an unannotated term is to
simply rewrite it. However, during this rewriting we construct various temporary
terms (i.e. terms that do not necessarily occur in the result). For example, when
rewriting the term n + S(m) we do not immediately return the normal form of
this term but we apply one rewrite rule to get the temporary term S(n + m) and
then rewrite this temporary term. In the construction of these temporary terms
we introduce the function annotations for all function symbols in the temporary
term that are not known to be part of a subterm that is in normal form. By
leaving the known normal forms unannotated we trivially get that the result will
also be unannotated. Note that this means that matching will still be performed
on unannotated terms when using in-time strategies.

Now, when the rewriter encounters an annotated term, it can execute a strat-
egy that takes into account that certain subterms are already in normal form.
For example, if we look at the if function, we can use a sequential strategy
[{~}, {1}, {e, B}] for terms with head symbol if 2} (instead of the normal strategy
{1}, {«, 8},{2,3},{7}] from Section 2.1).

Another way to add this normal form information to terms is to add a marker
to terms that are known to be in normal form. This approach is taken in [vdP02]
were v(t) is written to indicate that ¢ is in normal form. The reason we prefer the
function annotations is that with it we can avoid additional term manipulations
— in particular term construction. With the marker we need to construct the
additional v around normal forms and, when it is requested to rewrite such a term
to normal form, we must remove it again. With function annotation we do not
need to construct an additional symbol; we just use a different symbol as head
symbol. Also, because this normal-form information is in the head symbol itself
and each annotated head symbol has its own rewrite strategy, we will avoid ever
requesting that a known normal form is rewritten (avoiding a call to the rewriter
and the removal of a marker). Note that making the marker part of the head
symbol of a normal form does not avoid the extra term manipulations; the output
should still be an unmarked term and thus these marked head symbols have to be
unmarked at some point.

The process of making strategies for the annotated head symbols is quite straight-
forward. For example, for the sequential strategies this just means using the an-

52 Chapter 4. Temporary-Term Construction

notation as input of the generation process (e.g. strat from Section 2.1) instead of
the initially empty set. In the next section we have a look at the construction of
temporary terms using these function annotations.

4.3 Construction

In this section we give an algorithm for the construction of temporary terms using
function annotations. This algorithm takes a term ¢ and a substitution o (the result
of a successful match) and constructs an expression e — consisting of annotated
terms and calls to rewrite functions — which, when evaluated, gives the normal
form of t. Of course, we try to do this in such a way that there are sufficient
annotations to avoid rewriting normal forms and that we use as much information
about normal forms as is available to us.

We observe two different sources of information about normal forms. Our pri-
mary source comes from the substitution that is the result of matching. For each
concrete application of a rewrite, we can use annotations of the input term and
the executed rewriting strategy to establish which variables the substitution cer-
tainly maps to a normal form. For example, for a term of the form f{} (¢, u)
and a strategy ¢(f11) = [{2}, {f(z,y) — 7}], we know that matching f{}(t,u)
to f(x,y) results in a substitution o where both z and y are mapped to normal
forms. For this reason we have an extra parameter N C V for the algorithm such
that o(z) € nf(o(x)) for all x € N.

Secondly, we might have function symbols that have no rewrite rules. If we
know that terms tq,...,t, are in normal form and there are no rewrite rules for
function symbol f, then we also know that f(¢i,...,t,) is a normal form.

The term construction function Y (¢,b) returns a tuple (u,c) such that
u is the term constructed from ¢ with substitution o (where o(xz) € nf(c(x))
for all x € N), ¢ indicates whether or not u is in normal form and b specifies
whether u must be in normal form. Its definition is as follows. We write {b;} for
{Z 01 S) § n A bz} and P(b) for Vlgzgn(<t;,b1> = (pffv(t“b))

N (z, false) = (o(z),z € N)

o (z, true) = (o(x),true) ifxeN

o (z, true) = (rewrite(o(x)), true) ifx g N

ON(f(t1,... ta),false) = (f(#),...), true) if Rp=0A
Vi<i<n(bi) A
P(false)

ON(f(t1,... tn), false) = (fL(t), ... t), false) if ~(Ry=0A

Vi<i<n (b)) A
P(false)

4.3. Construction 53

ON(f(t1, ... tn), true) = (f(#), ...,), true) if Rp=0A
P(true)

ON(f(t1,. .. tn), true) = <rewritef{b-i} (th,....t0), true) if Ry £ 0 A
P(false)

Of course we require this function to be sound. That is, tc must rewrite to u
and if b or ¢ holds then u must really be in normal form. This is expressed in the
following theorems. Note that we assume that the rewrite functions result in a
normal form related to the input.

Theorem 4.3.1 For all terms t and u, substitutions o, sets of variables N and
booleans b and c we have that if pY (t,b) = (u,c) then to —* u.

Theorem 4.3.2 For all terms t and u, substitutions o, sets of variables N and
booleans b and ¢ we have that if @Y (t,b) = (u,c) and bV ¢, then u € nf(to).

Besides the definition being sound, we also wish that it preserves as much infor-
mation about normal forms as possible. Given a substitution o and set of variables
N, we say that a term to is known to be in normal form if ¢ (¢, false) = (to, true)
(i.e. without using actual rewriting, the construction of term t¢o results in a nor-
mal form). We wish that to is known to be in normal form if none of the function
symbols in ¢ have rewrite rules and all variables of ¢ are in N. This is expressed
by Theorem 4.3.3. Besides this, we also want that if an argument of a function
f is in normal form according to ¢, that the annotation of f indicates this. It is
easy to see that this is the case by inspection of the definition of .

Theorem 4.3.3 Let t be a term, o a substitution and N a set of variables. We
have that o} (t,false) = (u,true) for some u if, and only if, t is either a variable
x such that & € N, or t = f(t1,...,t,) with Ry = 0 and ©Y (;,false) = (u;, true)
for some terms u; (with 1 < i < n). Furthermore we have that if ¢ (t,false) =
(u,true) for some term u, then u=to.

Note that we do not take into account that if substitution ¢ maps a variable to
another (or the same) variable, the latter is in normal form (as all variables are in
normal form). Adapting ¢ to take this into account is quite straightforward, but
we doubt this would have a positive impact on performance. Determining whether
a substitution results in a variable requires an additional check every time a rewrite
rule is applied and for each variable occurrence in the right-hand side (and possibly
the condition) of the rule. On the other hand, rewriting a variable to normal form
is relatively cheap and is only needed when the result of the substition is actually
a variable. Further investigation is needed to establish the actual impact of this
choice.

It is worth observing that in the case one uses sequential strategies that ef-
fectively rewrite innermost, temporary terms consist solely of direct calls to the

54 Chapter 4. Temporary-Term Construction

rewriter and normal forms. For example, a temporary term for right-hand side
f(g(z)) where z is matched with ¢ would be rewrite ;(; (rewrite 1, (t)). This cor-
responds with the optimisation as discussed in Section 2.2.

Also, there is the possibility to obtain a bit more information about function
symbols. Assume that we have a term t = f(¢y,...,t,) where terms ¢;, for ¢ with
1 < i < n, are in normal form. At the moment we determine whether ¢ is also
in normal form by checking whether f has rewrite rules or not. Instead, one can
check whether there is a rewrite rule of f that might match ¢ (using unification).
If this is not the case, we know that the term is in normal form as well.

4.4 Essential-Argument Detection

As an improvement to the term construction function ¢ of the previous section,
we can determine beforehand whether an argument of a function that is to be
rewritten will be rewritten as well in any case. We call such arguments essential.

Note that this notion is strongly related to the notion of strictness [PvE93]. The
reason we do not use the term strictness is because it is a notion that has very much
become connected to lazy evaluation as used in mainstream functional languages
(e.g. Haskell, Clean). It is often also not very clear what the precise context is; for
example, the way in which non-determinism is taken into account is hardly ever
made explicit. Also, because the semantics of lazy functional languages is often
defined by the used evaluation technique, it is not clear whether strictness should
be considered a semantic or implementation notion. We use essential arguments
as an implementation notion, meaning we do not check whether an argument is
rewritten for all possible rewrite sequences but only for those that are actually the
result of the use rewriting strategy.

Another closely related notion is that of call-by-need [HL91]. This method de-
termines the subterms of a term ¢ that need to be rewritten in any reduction (i.e.
are needed) to a normal form. Only needed subterms are rewritten. The differ-
ence with our setting comes from the fact that call-by-need is defined purely with
respect to the rewrite system and limits the allowed strategies to rewriting only
needed terms. We do not restrict strategies in any such way and base our form
of neededness (i.e. essentiality) on the strategies instead of the rewrite system.
Of course, any practical strategy will rewrite to normal form (w.r.t. the rewrite
system) and must therefore rewrite all needed terms. It may, however, also rewrite
terms that are not needed. One could call such strategies approximations of call-
by-need.

Assume we have a function ea that, given a function symbol f and argument
index i, states whether or not argument 7 of f is an essential argument. That is,
let ea(f,7) hold if, and only if, the rewriting of a term of the form f(¢1,...,t,)
always results in the rewriting of term ¢;.

With this we can change the last case of the definition of ¢ of the previous section

4.4. Essential-Argument Detection 55

by replacing P(false) by Vi<i<n({ti,b;) = ¢ (ti,ea(f,4))) (with the change in
bold). It is straightforward to see that this adaptation does not influence the
theorems of Section 4.3 by inspecting the proofs in Appendix D.

This change expresses that if a term will always be rewritten, we might as well
do this immediately instead of constructing a temporary term that will need to
be rewritten later on anyway. This can greatly reduce the number of temporary
terms that are created and as such the time needed for rewriting. Temporary terms
cost time to construct and rewriting them requires additional calls to the main
rewrite function. Note, however, that rewriting subterms earlier can influence the
outcome of rewriting (as discussed in Section 4.1).

To determine the function ea(f,7) we must define what it means for an argument
to be rewritten in any case. Because this function is not easily calculated due to
recursive dependencies, we do this by defining a boolean equation system [Mad97].
This boolean equation system consists of variables Xy ; corresponding to ea(f,1),
for all function symbols f and indices 7. The value of such a variable X ; depends
on the strategy ¢(f). We define a function (s, i) that determines the expression
indicating whether or not execution of sequential strategy s will always result in the
rewriting of argument 4. For this function ¢ we must be able to determine whether
the specific rewrite rules from a strategy rewrite the given argument. Therefore
we define the function &(r,4) that gives the expression stating that rewrite rule
r will result in rewriting argument <. Finally, for function £ we must be able to
determine whether the right-hand side of a rewrite rule has this effect. This is
determined with function x(¢,7) that takes a term and a position and gives an
expression indicating whether ¢|, will be rewritten.

We start with the definition of x.

x(t,€) = true
X(f(t17...7tn),7;'77') = Xf’l AN X(tiﬂT)

So the subterm x of f(g, h(x, k)) is rewritten if both the second argument of f and
the first argument of h are always rewritten (i.e. if X0 A Xp1).
With x we can define &.

g(f(tla cee 7tn) — U, 7’) = vﬂepos(ti) A ule=t; X(uaﬂ-)

That is, £(f(t1,...,tn) — u,i) is true if argument ¢; of f occurs as a subterm
of u and that subterm will always be rewritten.
The function v on strategies then becomes as follows.

¥([],4) = false; the empty strategy does nothing, which includes not
rewriting the ith argument.

Y(I > s,1) =1 €1 V (s,i); this strategy first rewrites the arguments
from I and then continues with strategy ¢, so argument ¢ is rewritten if
it is in [or if it is rewritten due to ¢ (or both).

56 Chapter 4. Temporary-Term Construction

V(R > s5,1) = \,cp&(r,i) A (s, i); this strategy tries to apply the rules
from R and if none match it continues with s. We only know for sure
that argument ¢ is rewritten if it is rewritten in all possible courses of
action.

To illustrate, the strategy of the if (s(if) = [{1},{e, 8}, {2,3},{7}]) results in
Bls(if),i) = i € {1}V (€l i) AE(B,) A (i € {23}V (€(7,7) A false)). That is,
argument 1 while always be rewritten and arguments 2 and 3 will be written if
E(a,2) NE(B,2) and E(a, 3) A E(S, 3), respectively.

For each variable X¢ ;, indicating whether we know for sure that argument 7 of
f will always be rewritten, we get the following (greatest) fixed-point equation.

vXpi = (c(f) i)

The greatest fixed-point operator ¥ means that if there are solutions where Xy ;
is true and solutions where it is false, then we are interested in the ones where it
is true. The example at the end of this section illustrates this.

Note that in the definition of £ arguments ¢; need not be variables; they can
actually be complex terms. As £ is used to determine whether an argument t; is
used or not, this means that we assume that if a complex argument occurs in the
right-hand side of a rewrite rule, this knowledge is used to avoid rewriting that
subterm. For example, when applying rewrite rule f(g(x)) — h(g(z)) to a term
f(g(t)), this would mean that you do not construct the right-hand side by taking
the value for x (i.e. t) and applying g and h to it, but by taking g(¢) from the
original term and apply h to it.

However, for strategies that are in-time we know that complex arguments are
rewritten before trying to apply a rule. We therefore know, by the definition of v
that such an occurrence of £ is a subterm of an expression of the formie IV ...
where ¢ € I is true. Therefore this assumption does not play a role with such
strategies. It is quite straightforward to adapt the definition of £ if non-in-time
strategies are used and the assumption does not hold.

Solving a boolean equation system can be done in various ways (see, for example,
[Mad97, Mat03, GKO04]). Here we only consider a small typical example to illus-
trate how we use boolean equation system to define ea. Consider the functions
add and mult on natural numbers (defined by 0 and successor function §).

ay: add(0,y) — Yy
ag: add(S(z),y) — Sladd(z,y))

w1 s mult(0,y) - 0
o s mult(S(x),y) — add(mult(z,y),y)

4.4. Essential-Argument Detection 57

Let Soqa = [{1},{cu1, a2}, {2}] and Gpue = [{1}, {141, 2}, {2}]. We then get the
following boolean equation system. Note that the strategy for S is [{1}] (and for

0 it is []).

v Xaaaq = 1€ {1}V (false Afalse A (1 € {2} V false))
vXgad2 = 2€{1}V (trueA (Xsi1 A Xggao Atrue) A (2 € {2}V false))
v Xpmutn = 1€ {1}V (truenfalse (1 € {2} V false))
v Xpute = 2€ {1} V (false A ((add,1 N Xmuie,2 N true)\/
(Xaaa,2 Atrue)) A (2 € {2} V false))
v Xsa = 1le{1}Vfalse
This can be simplified with standard calculus to the following equations.
v Xadd,1 = true
vXaag2 = Xsi1AXaddo2
Vv X1 = true
v X2 = false
v Xs = true

It is easy to see that the greatest solution for X444 2 is true and therefore we know
that both arguments of an add will always be rewritten. For mult this is not the
case as the rewrite rule py discards the second argument.

Note that even though the second argument of mult is not always rewritten, it
might be useful to rewrite it anyway. In general usage the occurrence of mult(0,y)
might be relatively scarce. This is, however, outside the scope of this thesis.

Currently we only consider whether an argument will be rewritten for all possible
instantiations of the arguments. But if we know that the arguments have a specific
structure we can detect even more arguments that will be rewritten. Consider,
for example, the mult in the example above. If we know beforehand that the
first argument of mult will be of the form S(t) for some term ¢, then the second
argument will always be rewritten.

To use this information we can extend the method to pattern equation systems
(i.e. equation systems where variables range over patterns or sets of terms). Here
a variable X ; will be the pattern (or set of patterns) on the arguments of f such
that argument ¢ will always be rewritten. To illustrate, the variable X, 2 would
be assigned the pattern (S(-),-) (the other variables allow any arguments). It is,
however, important to note that this only works where arguments like S(t) are
known to be in normal form (unless one has strategies that are not in-time).

Due to the significant increase in complexity (i.e. working with patterns instead
of booleans) one may wonder whether or not such a method is practically desirable
or whether there are more straightforward approaches.

Another approach could be to establish with what probability arguments will
be rewritten. This would allow a rewriter to rewrite subterms in advance if the
probability that they will be rewritten anyway is greater than a certain percentage.
Taking the mult example again, we might be able to deduce that in certain cases 0

58 Chapter 4. Temporary-Term Construction

as first argument of mult is much less likely then something of the structure S(t).
This approach does additionally raise the question what a reasonable percentage
is for determining whether an argument should be rewritten and how to determine
percentages.

Chapter 5

Strategy Trees

5.1 Introduction

In order to allow for more efficient rewriting we have used the notion of sequential
strategies as defined in Section 2.1. With it we can avoid rewriting arguments
of functions that are not needed for rewriting a term to normal form. We recall
having the function if with the following rewrite rules.

Z.f(truea €, y) -
if (false, z,y) —
N

By using a strategy that first rewrites the first argument of an if, we can immedi-
ately apply one of the first two rules and “dispose” of the unused argument if this
first argument rewrites to true or false.

We have seen that this is a very effective method, but there is still room for
improvement. Consider, for example, the function len that computes the length
of a list. This function would typically have the following rules.

SERSEES

len([]) - 0
len(s>1) — 1+ len(l)

No matter what kind of sequential strategy one would make, one must at some
point rewrite the argument of len to a normal form.

However, looking at the rules for len, it is evident that it is irrelevant what the
actual elements of the list are for the result of len. To illustrate, the term len(|w]),
where w only rewrites to itself, can be rewritten to 1+ 0 in two steps even though
the argument of len has no normal form.

We therefore desire a notion of strategies that allows us to tackle these problems.
The most essential part of the solution will be the ability to rewrite a term only
as long as its head symbol is not stable (i.e. there might be a sequence of rewrite

60 Chapter 5. Strategy Trees

rules applicable that would change the head symbol) and afterwards continuing
with a strategy based on such a head symbol. In the case of len one would expect
to get something of the following form.

1. Rewrite argument until it has a stable head symbol.
2. If this head symbol is [], then return 0.

3. If this head symbol is >, then return 14 len(l) where [is the second argument
of this .

4. Else rewrite argument to normal form (as there are no rules that apply).

Due to the branching nature of these kind of strategies, we use a tree structure
to construct them. The nodes of these strategy trees correspond to activities such
as rewriting a term to stable-head or normal form, branching according to the
head symbol of a subterm and trying to apply some rewrite rules.

In [FKWO00] and with the E-strategies of OBJ languages [GWJMJ00, OF97]
attempts are made to improve the termination behaviour of rewriting by indicating
argument indices of functions as either “eager” or “lazy”. The idea is that lazy
arguments are never rewritten unless there is a specific reason to (e.g. in order to
match). Take, for example, the rules below:

take(0,1) —
take(n +1,s>1) — s> take(n,l)
from(n) — n> from(n+1)

Here one would typically indicate the first argument of > as eager and the second
argument of > as lazy. This way from(0) will not rewrite any further than 0 >
from(1) and a term like take(3, from(0)) can be easily calculated without trying
to determine a normal form of from(0). With E-strategies one can also indicate
function symbols themselves as eager or lazy. For example, one could declare w to
be lazy in order to avoid rewriting it in terms like len([w]).

Although we have not investigated this, we believe such strategies can be for-
mulated as strategy trees as well (with exception of the on-demand extension of
E-strategies). We do think, however, that focus of this approach, which lies on
function symbols in themselves, is not an optimal one. In our mind the context
in which a function symbol (as head of a subterm) occurs is a much better indi-
cator of what needs to be done. For example, with strategy trees one can also let
a strategy depend on subterms deeper than the arguments of the root; with the
above strategies you have to depend on the strategy given for the function such a
subterm is an argument of.

5.2. Syntax and Semantics 61

We first give the precise syntax and semantics of these strategy trees in Sec-
tion 5.2 and show that sequential strategies can easily be translated to a strategy
tree. In Section 5.3 we define a property on strategy trees that guarantees that
their usage really results in normal forms. Using this property we give a strategy
generation function that constructs a strategy tree given a set of rewrite rules
(Section 5.4). We conclude this chapter with Section 5.5, a note on combining
strategy and match trees.

5.2 Syntax and Semantics

Strategy trees T have the following syntax. Here 7 is a non-empty position, ¢ a
function mapping function symbols and L to strategy trees, II a set of non-empty
positions and R a set of rewrite rules from the TRS.

T w= F(m¢) | HALT) | NFAILT) | T(R.T) | E | X

We write ST for the set of strategy trees.

The constructs NF, T and E correspond to respectively the rewriting of argu-
ments to normal form, trying rewrite rules and the empty strategy of sequential
strategies. The only difference is that NF accepts any set of non-empty positions
(instead of a set of indices only).

Similar to NF, H rewrites subterms to (at least) stable-head forms. With F one
can choose a strategy depending on the head symbol at the given position. Finally,
with X one can indicate that a term has an infinite rewrite sequence.

A strategy using strategy trees is a tuple (s, <), where ¢ and ¢, are functions
that map function symbols to strategy trees that are to be used for rewriting. For
function symbol f, ¢(f) and ¢, (f) are the strategy trees for rewriting a term with
head symbol f to normal form, respectively stable-head form.

We extend hs to hs™ such that hs*(z) = L. Similarly we write ¢ (and ;") for
the extension of ¢ such that ¢(L) = E.

We now give semantics to the strategy tree constructs we have just introduced.
The functions rewr and rewry, are meant to give the normal forms, respectively
stable-head forms for a given term (using the strategies supplied by ¢ and ¢,).

Definition rewr, rewry. Let (¢,¢,) be a strategy. We define the functions
rewr,rewry, : T — P(T) and eval,evaly, : ST x T — P(T) as follows. Note that the
definition of eval and evaly, is a minimal fixed-point definition (see Appendix A).

rewr(t) = eval(¢t(hst(2)),1)
rewry, (t) evaly (- (hs™ (1)), 1)

(continued on next page)

62 Chapter 5. Strategy Trees

eval(F(m, ¢),t) =, eval(p(hs™(t|x)),t) if € pos(t)
eal(F(r, o)1) =, evallg(1),?) if 7 ¢ posy(1)
eval(H(H, T)’ t) —n ULpErewrfh(t,H) eval(T7 t[@]n)

eval(NF(’ T)’ t) ~n ULpErewrf(t,H) eval(T, t[@]n)

eval(T(R,T),1) =i Uuecapp(r,t) rewr(u) if app(R,t) # 0
eval(T(R,T),t) =, eval(T,t) if app(R,t) =0
eval(E, t) =, {t}

eval(X, t) =, 0

evaly (F(m, ¢),t) =, evaly(p(hs(t]x)),t) if € posg(t)
evaly, (F(m, ¢), t) =, evaly(p(L),?) if ¢ posg(t)
evaly(HILT),t) =4 Ugerewrt,,m €valn(T' t[e]n)

evaly(NF(IL T),t) =4 U erewrt(e,m) evaln (T, tfe]m)

evalp(T(R,T),t) =p Uwcapp(ror) Fewrn(u) if app(R,t) # 0
eval,(T(R,T),t) =, evaly(T,t) if app(R,t) =0
evaly (E, t) =, {t}

evaly, (X, 1) =, 0

with auxiliary functions app : P(R) x T — P(T) and rewrf, rewrf), : T x P(P) —
P(P — T) defined as follows:

app(R, t) = {u:l—-rifceRANt=lo N u=ro A true € rewr(co)}
rewrf(¢,II) = {p : Veen(m € pos(t) = o(m) € rewr(t|x))}
rewrfy, (¢, 1) = {¢ : Veen(m € pos(t) = o(w) € rewry(t|))}

This definition is sound in the sense that rewr and rewry, only return terms that
can be obtained from the input by rewriting.

Theorem 5.2.1 For all termst and u such that u € rewr(t), we have that t —* u.
Similarly, for all terms t and u such that u € rewry(t), we have that t —* u.

The following theorem shows that we can easily translate sequential strategies
to strategy trees while preserving their functionality.

Theorem 5.2.2 Let @, the translation function of sequential strategies to strategy
trees, be defined as follows.

o([l) = E
p(I>s) = NF(L,¢(s))
p(R>s) = T(Rp(s))

If ¢ is a sequential-strategy function, then we have that rewr(t) for strategy
(Sp,Sn) 1s equivalent to rewry(t) for strategy <, where for all function symbols f

5.2. Syntax and Semantics 63

H({1})

>

@ T({len(s > 1) — 1 +1len(l)}) @

Figure 5.1: Strategy tree for len

So(f) = @(s(f)) and n is an arbitrary function.

We illustrate some strategy trees in the following examples. Here we draw
strategy trees such that each node is represented by an ellipse containing the node
without subtrees (e.g. NF(IT) for node NF(II, 7)) and there is an arrow from the
ellipse for node T and the ellipse for U if U is a direct subtree of T. In the case
of an F(m,¢) tree we consider all ¢(f+) trees as subtrees and label the arrows
with the corresponding f+. Here we often draw one subtree with incoming arrow
“others” for all equivalent subtrees that are not already separately drawn.

Example 5.2.3 A strategy tree for len is the following (as depicted in Figure 5.1).

H{1},F(1,¢))

Here ¢ is defined as follows.

o) T({len([]) — 0},X)
(> = T({len(s>1) — 1 +1len(l)}, X)

)
e(f*) = NF({1},E) if f+¢{[,>}

This strategy corresponds to the one discussed in Section 5.1.

Example 5.2.4 In Figure 5.2 a strategy tree is depicted that corresponds to the
innermost strategy for a function symbol f of arity n and with rewrite rules Ry.

Example 5.2.5 In Figure 5.3 a depiction is given of the translation (see Theo-
rem 5.2.2) of the sequential strategy for if. In Figure 5.4 an alternative strategy
tree is given that uses the extra possibilities of strategy trees. Here we use a H/F
combination to avoid unnecessary attempts to apply rules if(true, z,y) — = and
if (false, z,y) — y.

64 Chapter 5. Strategy Trees

NF({L,...,n})

QRH
(®)

Figure 5.2: Strategy tree for innermost rewriting

T({if(true, z,y) — =, if(false, z,) — y})
Corza
(e)

Figure 5.3: Strategy tree for if (sequential)

Strategy Tree Manipulation

In certain cases it is useful to be able to manipulate strategy trees while preserving
their behaviour to some extent. For example, in the implementation of strategy
trees one typically wants only a single normal form for a term, which can be
achieved by trying rewrite rules one at a time instead of a set of rules at a time.

5.2. Syntax and Semantics 65

H({1})
true
(x
others
G >
(®)

Figure 5.4: Strategy tree for if

T({if (true,z,y) — x})

T({if (false, z,y) — y})

Also, as we can see in Section 5.4, automatic generation of strategy trees can result
in trees that are larger than strictly necessary and one might wish to simplify such
trees.

First we specify what we mean with preservation of strategy tree behaviour.
The semantics of strategy trees induces an equivalence on trees; strategy trees
that result in the same set of normal forms for each term can be considered equiv-
alent. For example, the trees NF({1,2},T) and NF({1}, NF({2},T)) have the same
semantics. By assuming an order on sets of terms, we also easily get an order on
strategy trees.

We define the following order on sets of terms and extend it to strategy trees.
This order is chosen to reflect the amount of non-determinism in trees.

Definition <. We define the order < C P(T) x P(T) as follows.

< 0
S < SUT ifS#£0

66 Chapter 5. Strategy Trees

Definition <, <;,. We define the orders <,<; C ST x ST as follows. For all
strategy trees T and U, T' < U holds if, and only if, for all TRSs (X, —)n, terms ¢
and strategies (s, <), it holds that eval(T,t) < eval(U,t). Similarly, for all strategy
trees T and U, T' <y, U holds if, and only if, for all TRSs (3, —)n, terms ¢ and
strategies (¢, <), it holds that eval, (T, t) < evaly (U, t). We say two strategy trees
T and U are equivalent (modulo eval) if T < U A U < T and equivalent (modulo
evaly) if T <, U A U <, T. We write these equivalences as = and =y, respectively.

Conjecture 5.2.6 Let (¢,s,) and (¢',sf) be strategies and t a term. If for all
f we have that <(f) < ¢'(f) and o (f) < ¢ (f), S = rewr(t) using (s,sn) and
S’ =rewr(t) using (¢',s), then S < S".

7

We have the following (in)equalities. These (in)equalities are mainly given as a
means to eliminate non-determinism in the implementation of strategy trees. Note
that these have not been proven to be sound.

Property 5.2.7

F(m, o[f+ = F(m,) F(m, olf = ¥ (f))

Fimolft = F(m9)l) =n F(melfr=9())
H(IT, H(IT", 7)) = HIull',T) fIINIT =0
H(IL, H(IT', T)) =, H@Oull',T) fIINTY =0
NF(IT, NF(IT', 7)) = NFIIUIl',T) fIINIY =0
NF(TL, NF(IT', T)) =, NF(ITUI',T) f IINTY =0
T(R, T(R',T)) < T(RUR\.T)

T(R, T(R,T)) <, T(RUR\T)

Theorem 5.2.8 Let (s,<n) be a strategy. If all T nodes of all strategy trees <(f)
and u(f), for all function symbols f, have a set with at most one rewrite rule,
then |rewr(t)| <1 and |rewry (t)| < 1 for all t.

5.3 Normalisation

Of course, we also wish that rewr actually returns normal forms and that if it
doesn’t, that there is a reason for it (i.e. that there is an infinite rewrite sequence).
That this isn’t the case in general is obvious if one considers, for example, the
strategy (¢,¢n) where ¢(f) = E for all f. Like with the sequential strategies, we
need a property on strategies that guarantees that they do what we want.

Below we define what it means to be thorough for both strategy trees and
strategies. Conceptually one can think of this property as saying that when one

5.3. Normalisation 67

“arrives” at an E or X node, one is certain that there is no use in trying to apply
any rewrite rule (directly with T or indirectly with H or NF). In other words,
when arriving at an E one wants that the term that is being rewritten is already
in normal form. Similarly, when arriving at an X one wants that such a term has
an infinite rewrite sequence.

To express this property we use three auxiliary sets. One set (.5) is a set of terms
that contains those terms that a tree can be applied to (in the given context). For
example, if T'= T({f(c) — t},U) is a strategy tree that can be applied to the
terms in S, then we have that U will only be applied to those elements in S that
do not match f(c).

A set of rewrite rules (R) is maintained to collect those rewrite rules we are
certain of that they do not match terms in S. Finally, a set II of positions is
maintained to collect those positions of terms in S that are known to be in head
normal form (i.e. if a position in IT is a valid position in a term ¢ € S, then t|, is
in head normal form).

Note that we use the notion of head normal form instead of stable-head form.
The reason for this is that we know that if all subterms of a term are in head
normal form, then the term itself is in normal form (Theorem 2.1.1). For stable-
head forms we do not have such a theorem. We believe that it is possible to also
define a notion of thorough that uses stable-head forms instead of head normal
forms but have not investigated this. We expect that in practice the H construct
is mainly used to filter out constructor functions (e.g. [] and >), for which head
normal form and stable-head form coincide, and that if no such stable head symbol
can be found the whole (sub)term needs to be normalised.

Definition thrgh, thrgh,. We define that a tree T" is thorough with respect to
a function symbol f, set of terms .S, set of rewrite rules R and set of positions II,
notation thrgh(T, S, R,II), in the following way.

thrgh(F(m, ¢), S, R, 1) = Vp (thrgh(y(f),
{te S : weposi(t) A hs(t|=) = f'},
RU{l—rifce Ry : =3,(m € pose(lo) A
hs(lolx) =)},
) A
thrgh(y(L),{t € S : m € pos(t)},
RU{l—rifce Ry : mepos())},ITU{r})
thrgh(H(I', T'), S, R,II) = thrgh(T,
{tIYlr : t€SA
Veerw (m € pos(t) = ¥(m) € rewry(tx))},
{peR : Vies(O(t, p) \II" #0) v
IT' Nesspos(p) C 11},
(MMUIl)\{m-i-7" : weIl'})

(continued on next page)

68

thrgh(NF(IT', T), S, R, 0)

thrgh(T(R',T), S, R, TI)

thrgh(E, S, R, II)
thrgh(X, S, R, 1II)

Chapter 5. Strategy Trees

thrgh(T,
{t[w]nl tteSA
Veer (m € pos(t) = (m) € rewr(t|))},
{pER : Vies(A(t,p) \ I #0) v
I’ Nesspos(p) C II},
Hulr)
thrgh(T,
S\{lo : l ->rif ce R A true € rewr(co)},
RUR',TI)
Vies(pos(t) CITU{e}) A (S#0 = Ry CR)
Vies(t —%)

We define that a tree T is head thorough with respect to a function sym-
bol f, set of terms S, set of rewrite rules R and set of positions II, notation
thrghy (7', S, R,1II), in the following way.

thrghh(F(W, 7/})3 Sa R7 H)

thrghy, (H(II', T'), S, R, 1I)

thrgh, (NF(I, T, S, R, 10

thrghh (T(R/’ T)7 S7 Ra H)

thrghy (E, S, R, 1II)

thrghy, (X, S, R, II)

W (thrghy (6(),
{t€S : wepos(t) A hs(t|l.) = [},
RU{l—rifce Ry : —3,(m € pose(lo) A

hs(lofx) =)},
) A

thrghy, (¥(L),{t € S = & pos;(t)},
RU{l—rifce Ry : mepos())},ITU{r})

thrghy (T,

{t{Ylw : t€ SA
Veer (m € pos(t) = (m) € rewry (t|x))},
{peER : Vies(O(t,p) \II' £ 0) v
IT" Nesspos(p) C 11},
(MUl \{r-i-7" : mell'})
thrghy (7'
{t{Ylw : t€ SA
Veer (m € pos(t) = (w) € rewr(t|))},
{PER Vies(9(t, p) \ 11" # (DLV
I’ Nesspos(p) C I}, TTUIL)

thrghh(Ta
S\{lo : l = rif ce R' A true € rewr(co)},
RUR' T

Vies,i—rif cer (O, 1) NILAD v (9(t,1) =D A

esspos(l — rif ¢) CII A
—3,(t =1lo A true € rewr(co)))) A
(S#0 = Ry CR)
Vies(t —¢)

5.3. Normalisation 69

We say a strategy (¢,<n) is thorough if all strategy trees ¢(f) and <, (f) are
thorough, respectively head thorough with respect to function symbol f, set of
terms {f(t1,...,tar(s)) : true}, set of rewrite rules () and set of positions (). That
is,

thrgh((c,cn)) = Vy(thrgh(c(f), {f (1, tar(s)) : true},0,0) A
thrghh(gh(f)v {f(tlv s atar(f)) : true}, ®7 (Z))) :

Theorem 5.3.1 Assume a strategy (s,sn) that is thorough. We then have that
rewr(t) C nf(t) and rewry(t) C hnf(¢) for all terms t.

Theorem 5.3.2 Assume a strategy (s,sn) that is thorough. We then have that
rewr(t) =0 = ¢t —>* and rewry(t) =0 = t =% for all terms t.

Note that if one has a thorough strategy and true itself is a normal form, then
we trivially have that true € rewr(t) is equivalent to true € rewry (¢) for all terms ¢.
This means that we can safely use rewry, for condition evaluation in such a context.
This can avoid a lot of unnecessary rewriting if a condition does not rewrite to
true (or, for example, false).

Example 5.3.3 The strategy trees of Example 5.2.3, Example 5.2.4 and Exam-
ple 5.2.5 are all thorough. Below is the derivation that shows this for the strategy
tree for len.

thrgh(H({1},F(1,¢)), {len(l) : 1 € T},0,0)
thrgh(F(1,¢),{len(l) : 1€ T A I €rewry(l)},0,{1})

thrgh(T({len([]) — 0}, X),
{len([]) : [] € rewrn(])}, {len(t > 1) — 1 +len(l)}, {1}) A
thrgh(T({len(t > 1) — 1+ len({)}, X),
{len(er>1) : e, €T A el erewry(er>1)},{len(]]) — 0},{1}) A
Vieq),o (thrgh(NF({1}, E),
{len(l) : 1 €T A lerewrp(l) A €€ pose(l) A hs(l) = f},
Rien, {1})) A
thrgh(NF({1},E), {len(z) : = € V}, Rjen, {1})

70 Chapter 5. Strategy Trees

thrgh(X, 0, Rien, {1}) A

thrgh(X, 0, Rien, {1}) A

Vi gq)o (thigh(E, {len(l) : 1€ T A 1€ rewr(D)}, Rien, {17 : true})) A
thrgh(E, {len(z) : « € V}, Rjen, {1 -7 : true})

Vieo(t =) A
Vieo(t =) A

Vflg{[],b}(vte{len(l) €T A l€rewr(l)}<pos(t> - {1 ST true} U {6}) A\
Rlen g Rlen) A
vtE{len(f) :x€V} (pOS(t) g {1 CT true} U {6}) A Rlen g Rlen

true

We have that the notions full and in-time of sequential strategies are included
in the notion of thoroughness.

Theorem 5.3.4 Let ¢ be a sequential strategy that is full and in-time. We have
that the strategy (Sy,<sh) as given by the translation in Theorem 5.2.2 is thorough.

5.4 Strategy Generation

Until now we have only discussed the semantics of strategy trees. For practical
applications a relevant question is how one obtains a strategy (given a set of rewrite
rules). Many different approaches can be used. Similar to what we have done in
Section 2.1 for sequential strategies, we wish to give a straightforward method for
constructing strategy trees.

For sequential strategies the construction of strategies is guided by the needed-
ness of arguments of the head symbol. Those which are needed by most rewrite
rules are rewritten first. We extend this to strategy trees by considering the need-
edness of symbols at positions in the term to be rewritten. For example, for the
rule f(g(x),y,h(z,¢)) — t we can say that it needs the symbols g, h and ¢ at
positions 1, 3 and 3 - 2, respectively.

Another form of neededness is that of multiple occurrences of variables at the
left-hand side or the right-hand side or the use of variables in conditions. Unlike
with sequential strategy generation, we must differentiate these two types of need-
edness. The first requires only a rewrite to stable-head form and a check for the
relevant symbols. The other form requires a rewrite to full normal form but no
checks.

First we introduce some auxiliary functions. The functions needs and need, give
the needed positions according to the above explanation.

5.4. Strategy Generation 71

neede(Il — rif ¢) = pose(l)

need,(l = rifc) = {mepos,(l) : Fnz(llx =1x) V l|x € var(c) V
Fri o (M1 # T2 A Tlry = Uz =7x)}

Note that need¢(p) U needy (p) is a superset of esspos(p) for all rewrite rules p.

Next we define auxiliary functions that will determine which activity should be
“done” first in a strategy tree based on a set R of rewrite rules that still need to
be tried and a set II of positions we have not rewritten to (head) normal form.
The function stready : P(R) x P(P) — P(R) returns those rewrite rules of which
all needed positions have been rewritten to (head) normal form.

stready(R,II) = {p : p€ R A IIN (need¢(p) Uneed,(p)) = 0}

The functions needy’,needy : P(R) x P(P) — P(PP) return those positions that
have a maximum weight according to weight function w : P(R) x P(P) x (R —
PP)) — P(P) x O with {7 : (m,r) € w(R,II,¢)} CII and O a complete lattice.
This weight function is used to express what it means for a position to be needed
by most rewrite rules. Here the first two arguments specify which rewrite rules
and positions have to be taken into consideration and the third argument specifies
a function that is to be used to determine which positions are needed for a single
rule.

need;’ (R, II) {m : (m,n) € w(R,II,needs) A

n=1{n" : (z',n') € w(R,1I,needs)}}

needy (R,I1I) = {m : (m,n) € w(R,I,needy) A
n=1{n" : (7/,n') € w(R,II, need,)}}

Examples of weight functions are given below. Function w; corresponds to simply
counting the number of rewrite rules that require a given position. Function ws, on
the other hand, also tries to take into account the amount of “progress” rewriting
a given position leads to. For example, if one rule requires only position 7 and
another requires different positions 7’ and 7, then w; will give all positions the
same weight while wy will give m more weight then 7’ and 7" because rewriting 7
directly leads to being able to try a rewrite rule.

72 Chapter 5. Strategy Trees

’LU1(R,H, @) = {<7T’ n> crell AO<n= ZpER,ﬂ’Eip(p) 1}

w(RILyp) = {{mmn) : 7€l AO<n=3 cp coi i)

A final auxiliary function filters a set of rewrite rules such that all remaining
rules allow a given function symbol in a certain position. This function is used
after the introduction of an F node to eliminate all rewrite rules that will never
match in a given subtree.

stfilters(m, f,R) = {l—rifce R : I,(m € pos(lo) A hs(lo|z) = f)}
stfiltery (7, R) = {l—-rifceR : m¢pos(l)}

Note that there is some improvement possible with respect to this filtering. For
example a rule with pattern f(x,x) will not be filtered out if it is determined (by
means of F nodes) that the first argument starts with a symbol g and the second
with a different symbol h. However, this requires one to keep track of the structure
of the term that has been determined so far and it is not clear that doing so gives
a significant effect in practice.

Our strategy generation function for normalising strategy trees, given a weight
function w, is as follows (where R # () and ¢ is some choice function).

stgen(Ry) = stgen'(Ry, {1 : 1 <i<ar(f)})

stgen’(0, 1) = NF(IL,E)

stgen/(R,II) = T(R/,stgen’(R\ R',II)) if R’ = stready(R,II) #

stgen'(R,II) = H({w}, F(m, stfunc(r, R,1II))) if stready(R,1I) =0 A
need¢’ (R, II) £ 0 A
7 = t(need;’ (R, II))

stgen’(R,II) = NF({r},stgen/(R,II\ {r})) if stready(R,1I) = () A
needy’ (R, II) = 0 A
m = t(need; (R, 1))

where
stfunc(m, R, II)(f) = stgen’(stfilter¢(, f, R),

M\ {rh) U {n i+ 1<i<ar(f)})
stgen’ (stfiltery (w, R), 1T\ {7})

stfunc(m, R, II)(L)

5.4. Strategy Generation 73

The strategy generation function for head normal form strategy trees (denoted by
stgen,, and with auxiliary function stgenf, and stfuncy) is the same function except
for the case stgeny, (0, II), which is defined as E.

As long as applying stgen or stgen, to a set Ry does not result in a strategy
tree with infinite depth, we have that the strategy tree is (head) thorough. This
condition is guaranteed by requiring finiteness of the set of all positions that are
valid for some left-hand side of a rule in Ry. Note that this formulation does allow
infinite branching in strategy trees.

Theorem 5.4.1 Let f be a function symbol such thatJ,_,, ;¢ ceR; pos(l) is finite.
We have that stgen(Ry) is thorough w.r.t. f and, similarly, that stgen,(Ry) is
head thorough w.r.t. f.

Note that this strategy generation function can generate subtrees that will never
be used as in the example below. This is due to the fact that it does not take into
account that rewrite rules [— r if ¢ with esspos(l — 7 if ¢) N pos, () = @ will
always be applied when tried. Taking into account the structure of the term that
the strategy has determined at a given point (as discussed above) would enable one
to easily avoid such subtrees during construction. Do note, however, that these
unreachable subtrees do not have a direct impact on performance (time wise).

Also note, that one might want to use the (in)equivalences from Section 5.2 to
optimise the strategy trees if needed.

Example 5.4.2 We consider the function if again. We recall rewrite rules @ =
if (true, z,y) — =z, 8 = if(false,z,y) — y and v = if(b, z,2) — x. We use weight
function wy (although the weight function does not have any effect on the actual
results).

stgen({e, 5,7})

stgen’({a, 3,7}, {1,2,3})
= {w'({a,87}{1,2,3}) = {(1,2)} }
H({1}, F(1,stfunc(1, {e, 3,7}, {1,2,3})))

We continue with stfunc(1, {«, 8,7}, {1, 2,3}) for the relevant cases. First for true:

stfunc(1, {o, 8,7}, {1,2, 3}) (true)

stgen’ (stfilter¢ (1, true, {«, 8,7}), {2, 3})

74 Chapter 5. Strategy Trees

stgen’({o, 7}, {2,3})

T({a}, stgen’({~},{2,3}))

We have the following for stgen’ ({7}, {2,3}). Note that this is a subtree that will
actually never be reached.

stgen’ ({7}, {2,3})

NF ({2}, stgen’ ({7}, {3}))

NF({2}, NF({3}, stgen’({7},0)))
NF({2}, NF({3}, T({7}, steen’(0,0))))

NF({2},NF({3}, T({~}, NF(0,E))))

Next for false we get a similar derivation:

stfunc(1, {a, 4,7}, {1,2, 3}) (false)
stgen’ (stfiltere (1, false, {«, 5,7}), {2, 3})
stgen'({8,7},{2,3})

T({B},stgen’ ({7}, {2,3}))

And finally for arbitrary symbols different from true and false:

stfunc(L, {a, 3,7}, {1,2,3))(f)
stgen’(stfiltere (1, f, {c, B,7}),{1-1,...,1-ar(f),2,3})
stgen’({v},{1-1,...,1-ar(f),2,3})
NF({2),stgen’ ({7}, {1 - 1,....,1-ax(/).3}))

NF({2}, NF({3},stgen’({~},{1-1,...,1-ar(f)})))

5.5. Strategies and Matching 75

H({1})

others

(V)
V() NF((2)) e

Tt 2h) 2>

(@)

()
a

Figure 5.5: Generated strategy tree for if

NF({2},NF({3}, T({7},stgen'(0,{1-1,...,1-ar(f)}))))
NF({Z}v NF({3}7T({7}’ NF({l 1.1 ar(f)}v E))))

The complete strategy tree is depicted in Figure 5.5.

5.5 Strategies and Matching

As strategy trees already make decisions based on the structure of terms, it would
be useful to pass this information on to use during matching. For example, in

76 Chapter 5. Strategy Trees

the example of len (Example 5.2.3) the strategy rewrites the argument to stable-
head form and then tries the appropriate rewrite rule. As both rewrite rules only
depend on the head symbol of the argument, one no longer has to check for it
during matching as it is only called with matching terms.

In general, where it is possible that the strategy tree has not examined all
positions esspos(p) of a term ¢ before trying to apply rewrite rule p on ¢, we have
a determined pattern p and substitution o such that ¢ = po. We would then
like to use this p in generating the match tree for p and pass on o when actually
matching. That is, we are interested in the following extension of the function ;.

t=po = ' (n(l—rifcp),|t],o) ={rr : t=I7 A true € rewr(cr)}

Note that we can safely assume that var(p)Nvar(l) = @), as we construct p ourselves.
With this, we propose the following definition of the extended v, (where we use
1 as a sort of “don’t care”).

m (l —,t) = 71([1]7 T [t]’ (Z))

A 1Y) - EM)

'y{(xl>srj_>s V) = Sl(z,9i(s,r, s,V U{z})) ifx gV

V(@ > s,y s V) = N(y(sly/z],r, s, VU{y}) ifzgV

vi(scbsrf(tl,...,t > & V) = S(m,vi(srs’VU{x})) ifxgV

vi(x > s,rt> s, V) = Mi(z,7(s,r, s, V),X) ifxeV

71((pla"'vpn)‘>$7r7J—‘>S/7V) = F(fafy(plbbpn>57
rnl>...>Llp>s, V) X)

’yi(f(pl,...,pn)l>s7r7x>s/,V) = F(f,’yi(p1l>...>pn>87

rnle...>L>s,V)X)

'Yi(f(pla7pn) > s, T,
flr,... ty) > 8, V) = Yp1>...>p,>s,
rti > .. >t > s V)

Vi(f(plavpn) > s, 7,
glt1, ... tm) > 8, V) = X

Note that if pr does not match [for any 7, then we can also simply take X as
the match tree for this rule or even remove the rule from the strategy tree.

Conjecture 5.5.1
t=po = p(nl—rifecp),[t],o)={rr : t=1I7 A true € rewr(c7)}

There are also other options to improve the connection between strategy trees
and matching. First of all, one could consider adding constructs such as S, M and

5.5. Strategies and Matching 7

C to strategy trees to combine strategies with matching. The advantage of doing
so would be that one can evaluate conditions or check the equivalence of subterms
even sooner and continue with a strategy using the result of such checks.

Another option is to not use match trees but a method that is tailored to fit the
used strategy trees. For example, if one uses the generated strategies of Section 5.4,
then one knows that when a rewrite rule is tried on a term ¢, this term has the same
structure as the pattern (looking only at function symbols). Thus, to complete
matching, one only needs to check that certain subterms are equivalent and that
the condition of the rewrite rule is satisfied.

78

Chapter 5. Strategy Trees

Chapter 6

Evaluation

6.1 Introduction

We evaluate the techniques described in this thesis per chapter. First we consider
the match trees from Chapter 3. In Section 6.2 we compare matching rules in
a rule-by-rule way and matching using match trees by looking at the minimal,
average and maximal number of steps (as indication of execution time) that are
needed to find a match (or determine that there is no match).

In Section 6.3 we evaluate the temporary-term construction of Chapter 4. Here
we look at the number of rewrite rules that are tested for a match, the number of
rules that is actually applied, the number of calls to the rewriter and the number
of term constructions that are needed to rewrite some specific examples. The same
approach is taken for the evaluation of the strategy trees of Chapter 5 (generated
according to Section 5.4) in Section 6.4. We also consider some previously obtained
results (from [vWO07] and some unpublished work) in Section 6.5.

6.2 Match Trees

We evaluate the match trees as generated by v by comparing them with rule-by-
rule matching. For the rule-by-rule matching we use the match trees for each of
the separate rules (i.e. those generated with 4!). The metrics we consider are the
number of nodes the match trees have and the minimum, average and maximal
path lengths through these trees (i.e. the number of “steps” in p). The number
of nodes gives an indication of the (static) memory requirements while the path
metrics give an indication of execution times.

The equality test consists of rewrite rules to define an equality function on a
sort with N constructor elements. For example, for N = 2 we have elements s;

80 Chapter 6. Evaluation

and so and the following rewrite rules:

eq(s1,81) — true
eq(s1,82) — false
eq(sa,51) — false
eq(s2,82) — true

For test fac and case we have taken the following rules. The case test is a
generalisation of the if using a sort with elements sy, s2, s3 and sy4.

fac(0) — 5(0)

fac(S(n) — mult(S(n), fac(n))
case(s1,T1,T2,23,T4) — Ty

case(s2, T1,T2,23,T4) — T2
case(ss, T1, T2, T3, Ta) — T3

case(sq4, T1,T2,23,T4) — Ty

As case reversed test we have taken the rules from the case test and reverse the
arguments (i.e. elements s; are in the fifth argument).

The prioritised eq and (prioritised) fac are taken from [BBKWS89] (see Ap-
pendix F.1 and Appendix F.2). For plus and ho plus we have taken the rules from
the introduction (with the arguments swapped) and from Example 3.3.2.

The results of our evaluation, as displayed in Table 6.1, show that using (com-
bined) match trees is in most cases an improvement over rule-by-rule matching.
The only metric where match trees sometimes perform worse is the minimal path
metric. This is due to the fact that with rule-by-rule matching you might be lucky
and be able to apply the first rule you try. However, the average path metric seems
to suggest that this is well compensated for.

We can clearly see the effect of using (combined) match trees instead of rule-by-
rule matching in the equality tests. With rule-by-rule matching there is quadratic
growth in the number of nodes, average path and maximal path. This is obviously
related to the quadratic growth in the number of rules. Also with the combined
match trees there is a quadratic growth in the number of nodes. However, this
only has effect on the amount of (static) memory. For time efficiency we can see
that the maximal path grows only linearly and the average path even seems to be
slightly sublinear.

Also, we see that application of reduce/clean can lead to significant reductions
in all measures, even though there is no change for many cases.

6.3 Temporary-Term Construction

To evaluate the various techniques described in Chapter 4, we look at how these
techniques influence the number of calls to the rewriter and the number of times

6.3. Temporary-Term Construction 81

before reduce/clean

rule-by-rule combined

min. avg. max. | nodes min. avg. max.

3 9.67 12 13 3 4.00 5
453 22160 27 25 3 515 T
80 3 3966 481 41 3624 9
1250 3 6216 T I Y R 3729 11
1800 3 789.66 108 | '8 3833 13

5 7.00 9 10 7 7.00 7

8 1245 16 41 5 10.20 13
44103318 40 | 29 22 2380 25

2 4.00 6 7 3 3.33 4
6 3 400 51 5 3350 4

4 5.33 8 11 3 4.67 6
152 629 0] 3 34T 6

after reduce/clean
rule-by-rule combined

rules | nodes min. avg. max. | nodes min. avg. max.

prioritised eq 2 9 5 6.00 7 7 5 5.00 5

case 4 32 7 10.27 13 29 5 7.80 10
case reversed | 4 | 327 2323 28 i 10 1180 13

(Test for which application of reduce and clean had no effect have not been included.)

Table 6.1: Evaluation results

a function application is constructed during innermost and just-in-time rewriting.
We also briefly look at the effect on the number of rewrite rules that were applied
or checked for a match.

The variations we consider are rewriting with (A) and without annotations where
the former is varied in whether constructor functions are taken into account (C),
the use of the term construction function from Section 4.3 (T) and the use of
essential-argument detection (E). The latter is only used (and applicable) in vari-
ants where also the term construction function is used. We refer to these different
variants by the relevant combination of letters (A, C, T and E). To be more pre-
cise, we actually always use the term construction function, but for (T) we use
true as second argument instead of false without (T) and when not using (C) we
effectively replace Ry = () with false in the definition of term construction function
Al

As benchmarks we use the same examples as used in [vWO07] except for the
higher-order binary search (which was only added there to show the use of higher-
order functions). These examples are the Fibonacci function (fib), and the bench-
marks from [Oli00] (evalexp, evalsym, evaltree). The latter have been slightly
adapted to compensate for the fact that we (in general) do not assume an order
on rules. The version of evalexp used here is also slightly different from the one
used in [vWO07] because in the latter a suboptimal alternative was chosen to com-

82 Chapter 6. Evaluation

pensate for the absence of ordered rules (which resulted in infinite reductions for
innermost rewriting).

Besides the benchmarks of [vWO07], for which both innermost and just-in-time
rewriting use the same rewrite steps (in terms of rules applied), we include 4 others
such that we have a somewhat more representative collection of benchmarks.

A frequently used operation is a simple traversal through a structure such as a
list or a tree. This includes inserting or removing an element, finding a specific
element and more complex functions (such as, for example, sorting) typically are
repeated applications of these operations. We have chosen to take two such oper-
ations. One (set add) is the insertion of an element to a sorted list. Sorted lists
are typically used as an easy representation for sets. The other benchmark consist
of the evaluation of a function that determines whether all elements in a list of
numbers are even.

The final 2 benchmarks are calculations of exponentials. One use Peano numbers
to calculate 23 and the other benchmark uses numbers in binary representation
to calculate 22'. The latter benchmark corresponds to the implementation used
in the mCRL2 toolset. All specifications of the used benchmarks are given in Ap-
pendix F.

First we take a quick look at the effect on matching and application of rewrite
rules. For innermost rewriting there is no effect with respect to this measure; the
specific benchmarks all have in common that normal forms consist of constructor
functions only, so no extra rewrite rules are checked when traversing a normal form
multiple times. For just-in-time rewriting we do see some variation as different
annotations lead to the use of different strategies. In Table 6.2 we have summarised
the results. Note that there is no change for the Fibonacci function and Peano
exponentiation because there are no functions in these benchmarks that benefit
from just-in-time strategies in the sense that there are no subterms that could be
discarded at some point. For “all even” there is also no change, but this time
because no additional information is needed to take the optimal choices. For the
other benchmarks we do see some differences when varying the used techniques,
but these are purely due to the specific examples. We believe it is possible to
create examples for any difference one might want to see. For example, you can
use a rewrite rule f — if (—false, 1,0) that causes just-in-time rewriting with only
annotations to check less rules for a match than it would if one also uses constructor
function information; in the latter case the rewriter is fooled into first trying rule
if (b, z,x) — x even though it cannot be applied.

Next we consider the effect on the number of calls to the rewriter and the
number of times function applications are constructed. In Table 6.3 the results
are displayed for innermost rewriting and Table 6.4 contains the results for just-
in-time rewriting.

The most obvious observation is that for each technique we have that it is
generally advantageous to add it to the rewriter. Another observation that can be

6.3. Temporary-Term Construction

fib(15)

evalexp(5)

evaltree(5)

83

evalsym(5)

Table 6.2: Number of rules checked for match during just-in-time rewriting

set add
calls

constr.

all even
calls constr.

exp peano
calls constr.

fib(15) evalexp(5) evaltree(5) evalsym(5)
calls constr. calls constr. calls constr. calls constr.
364026 358692 | 49128 48919 | 134137 131472 | 55956 56291

exp binary
calls constr.

Table 6.3: Evaluation of temporary-term construction for innermost rewriting

easily made is that the difference between “plain” rewriting or rewriting with all
of the considered techniques can make an enormous difference in performance. In
the case of rewriting fib(15) with an innermost strategy, we see a reduction of the
number of calls with a factor of over 50. Do note that it is easy to crank up this
number to arbitrary values by simple choosing the right example (e.g. for fib(16)
you get a reduction factor of almost 80). What we can conclude is that it is possible

84 Chapter 6. Evaluation

fib(15) evalexp(5) evaltree(5) evalsym(5)
calls constr. calls constr. calls constr. calls constr.
171040 170662 45139 45893 113695 114085 51418 52985
CA 13498 19062 | 0426 15232 | 19618 31426 | 11443 18669
CACT 10915 17466 | 3263 a7l | 7171 720332 | 3750 11834
CAT] 13498 13496 | 0426 12735 | 19618 25860 | 11443 15841
CACT | 6945 8540 | 3237 7259 | 7109 14736 | 3750 9008

set add all even exp peano exp binary

calls constr. calls constr. calls constr. calls constr.

1296 1167 163 128 147 122 292 198
AT i64 205 | 61 53 1 59 AN 94 116
CACT 1527 203 | 57 53 s (ORI 49 9T
AT] 164 1s2 | 61 39 | 59 a7 94 92
CACT 1527150 | 57 397 40 337 49 T3
AT TE | 164143 | 61 36 |59 271 | 94 66
"ACTE | 152141 | 57 36 |40 271 | 44777766

Table 6.4: Evaluation of temporary-term construction for just-in-time rewriting

to get very significant improvements in performance, but that it highly depends
on the input. We would not be surprised if one can also construct examples, for
every combination of techniques, that have a negative effect on the performance.

Looking a bit closer at the results we can see that using the term construc-
tion function only reduces the number of constructions. This is to be expected
because it replaces term constructions with direct calls to specialised rewriter func-
tions when they would have been rewritten later on anyway. For using essential-
argument detection we also see that mainly the number of term constructions is
reduced; exactly what it is supposed to do. It hardly ever affects the number of
calls as it only changes the moment at which certain calls are made. The usage of
constructor function information influences both measures (albeit somewhat more
for the number of calls). This is because it replaces calls with constructions when
possible and also marks subterms consisting completely of constructor functions
as normal forms. The latter saves calls, and consequently constructions, later on.

6.4 Strategy Trees

For the evaluation of strategy trees — or more specifically: the strategy trees as
generated by stgen — we compare them with innermost and just-in-time rewriting
by looking at the number of tried and applied rules as well as the number of calls
to the rewriter. For strategy trees the latter is divided in calls for normalisation
and calls for head normalisation. We write this as n + h, with n the number of
normalisations and h the number of head normalisations.

6.5. Previous Results 85

Let us look at the example of len. As benchmark we have taken the calculation
of the length of lists [fib(n—1),fib(n—2),...,fib(0)] for 4 <mn < 7. The results are
given in Table 6.5 (where just-in-time rewriting is left out as it performs the same
as innermost rewriting in this case). It is clear that the results for strategy trees
are linear in the length of the list while without strategy trees the results depend
highly on the elements in the list. Note that the data for innermost rewriting can
be tuned to arbitrarily high values by choosing the right elements for the list.

innermost stgen
#tries #applied #calls | #tries #applied #calls

fiblist(

fiblist(7)

Table 6.5: Evaluation of strategy trees for len

For a somewhat more general comparison between the different strategies, we
look at the benchmarks as used in Section 6.3. In Table 6.6 the results are dis-
played. In each case we can see that using strategy trees the number of calls to
the rewriter is reduced by a significant amount. What is also clear is that strat-
egy trees only try to apply a rule when it is certain that this will be successful.
Of course, one can argue that strategy trees use matching to do so and thus the
comparison is not entirely fair. For example, to rewrite a term that is already in
normal form, strategy trees will never try to apply a rewrite rule but do use a lot
of matching that does not turn up in the given result. However, looking at the
number of calls to the rewriter, this does not seem to be a significant problem.

6.5 Previous Results

In [vWO07] two implementations of rewriters for the mCRL2 toolset [Too| are eval-
uated w.r.t. execution time. One is an innermost compiling rewriter and the other
uses just-in-time strategies. Both use annotations and match trees. They are com-
pared with other implementations of rewriters and functional languages (Maude
[CDE*02], Glasgow Haskell Compiler (GHC) [L.S93], Clean [P1a95] and ASF+SDF
[vdBvDH'01]) as well as evaluated in the context of state-space generators (w.r.t.
CADP [GLMO02] and pCRL [BFG101]). All specifications were written for uCRL
and converted as direct as possible to the other languages (except for the binary
search, which was written for mCRL2). We recapitulate the results from [vWO07],
where OoM means that a benchmark ran out of memory before completion and
NA means that a benchmark was not applicable (due to the lack of support for
applicative terms). Here we are mainly interested in the comparison between the
two mCRL2 rewriters. These rewriters share as much of the implementation as
possible and thus only differ in the used techniques, which allows for a more ac-

86

Chapter 6. Evaluation

fib(15) | evalexp(5) evaltree(5) | evalsym(5)
Ftries
innermost #applied |
Cdfcalls
Ftries
just-in-time #£applied
Cffcalls
Ftries
stgen #tapplied
Cfcalls 3802414830 | 314647510 | 11051417374 | 394548529
set add all even exp peano | exp binary
Ftries 289 75 56 82
innermost #applied | g | - 333
Cffcalls | 3525 | 305 | 208 | 959
Ftries 188 35 56 48
just-in-time #fapplied | /E 3 20 333
Cffcalls | 1296 | 163 | ur | 202
Ftries 73 20 33 31
stgen “#applied | rE 3 20 333
Cffcalls] B654+180 | TH34| T Ti33 | 108+66

Table 6.6: Strategy-tree evaluation

curate comparison. Note that the OoM for evalexp(17) are due to the suboptimal
translation of the original specification to yCRL as noted in Section 6.3. For our
purposes, however, this has little importance.

The results of the comparison with other rewriters/function languages are shown
in Table 6.7. The benchmarks used are the same as we have used in the previous
sections together with a higher-order binary search (Appendix F.11). The most
interesting information to observe at this point is that the just-in-time rewriter is
significantly slower than the innermost implementation for certain benchmarks.

Maude | GHC ‘ mCRL2

Inner. | JITty

b.search

Table 6.7: Rewriting benchmarks from [vW07]

In Table 6.8 are the results for the comparison with respect to state-space gener-
ation for several benchmarks that can be found in both the pCRL and the mCRL2
toolset. An important aspect of these benchmarks is that both yCRL and mCRL2
repeatedly rewrite open terms to normal form, each time substituting variables

6.5. Previous Results 87

with other (small) open terms. This means that often terms are already in normal
form to a certain degree. We observe that in this case the just-in-time rewriter no
longer lags behind the innermost rewriter.

states | CADP | uCRL mCRL2
Innermost | JITty

chatboxt

commprot

Table 6.8: State-space generation benchmarks from [vWO07]

After observing the results from Table 6.7 the temporary-term construction
techniques of Section 4.3 were implemented in the mCRL2 toolset (aside from the
annotations, which were already used). In unpublished work, these new imple-
mentations were compared against an implementation without the new techniques
(though not the same implementation as used in [vWO07]). The results are given
in Table 6.9 and are relative to the old implementation. Here the superscripts C
and F indicate the use of constructor-function information and essential-argument
detection, respectively. Note that the innermost rewriter was implemented using
the trick described in Section 2.2 (making the need to use these new techniques
not necessary).

| Inner. | JITty | JITty® | JITty" | JITty“E
1 . .

b.search

Table 6.9: Benchmarks

These results clearly show that using the techniques from Section 4.3 brings the
mCRL2 just-in-time implementation up to speed with the innermost implemen-
tation for those benchmarks on which the just-in-time rewriter performed worse
before. This corresponds precisely with the results of Table 6.3 and Table 6.4,
where the Inner. corresponds to row A T E of Table 6.3, JITty to row A of Ta-
ble 6.4, JITty® to rows with A T in combination with x.

Combining the results from Table 6.7 and Table 6.9, we can conclude that
the mCRL2 just-in-time rewriter with all the techniques of Chapter 4 is quite
competitive with respect to the other rewriters/functional languages. Given the

88 Chapter 6. Evaluation

results from Section 6.4, it would be very interesting to see how an implementation
of strategy trees can further improve these results. Of course, this does require
some additional work to extend the temporary-term construction techniques to
strategy trees.

Chapter 7

Conclusions

In Chapter 3 we have given a formal definition of match trees for non-linear pat-
terns as well as extensions for conditional rules, applicative terms and priorities.
We have given separate functions for construction of match trees — to be used in
advance of rewriting — and for efficient matching using these trees. We have seen
in Section 6.2 that using match trees has no significant negative effect in any of the
cases we considered while it does have a very significant positive effect in certain
cases.

Although we established that it is not clear what optimality means for match
trees, we did give some reduction functions that clearly have a positive effect on
the efficiency of matching as shown in Section 6.2. It would be interesting to in-
vestigate measures on match trees that given an indication of the influence on the
performance of rewriting as a whole.

The strategy trees introduced in Chapter 5 are an extension of the just-in-time
strategies of [vdP01]. We have defined the notion of thorough on strategy trees
that guarantees normalisation that extends the notions of full and in-time of just-
in-time strategies. Also, we have given a function that returns thorough strategy
trees given a set of rewrite rules. In Section 6.4, we have seen that using strategy
trees results in a significant performance improvement over just-in-time strategies.
In addition, strategy trees are capable of normalising terms that result in infinite
behaviour with just-in-time strategies.

One of the things we are still interested in is whether or not E-strategies can be
written as strategy trees. In investigating this and to make strategy trees more
generally applicable, we would suggest combining the H and NF nodes into one
with an extra parameter to describe what kind of rewriting is desired (e.g. to full
normal form or some weaker form). Strategies would then become functions of
function symbols and the desired kind of rewriting to strategy trees. This allows
for a more natural usage of strategy trees where more and/or different kinds of

90 Chapter 7. Conclusions

normal forms are required.

We defined methods for term annotation (to keep track of normal forms) and
essential-argument detection in Chapter 4. As demonstrated in Section 6.3, both
these methods have a significant effect on the efficiency of rewriting. As future
work, determining how to best apply annotations in the context of head-normal
forms would allow us to use annotations in combination with strategy trees. In
addition, extending essential-argument detection to strategies trees would allow
us to take full advantage of the techniques described in this thesis.

Appendix A

Fixed-Point Definitions

A.1 Introduction

We introduce fixed-point definitions which allow one to easily define functions with
infinite recursion (typically as model for non-terminating behaviour).

A.2 Semantics

First we define fixed points for arbitrary functions. For sake of simplicity we only
consider functions of sort D — FE. It is straightforward to transform a function
of sort D; x ... x D, — FE to D — FE by introducing a sort D that consists of
vectors with elements from Dq,..., D,.

For the order <p_, g on functions of sort D — E we use a pointwise comparison.
That is, ' <p_.g G is equivalent to V,ep(F(v) <p G(v)). We usually leave out
the subscripts when it is clear what relation is meant. We say a function F : D — E
is monotonic if, and only if, ¥V, wep(v <p w = F(v) <g F(w)). We write | J and
() for the join, respectively meet of function sort.

We define the least fixed point of a monotonic function F': (D — E) — (D —
E), notation uX(d: D).F(X)(d) (or just uX.F(X)), as follows:

uX(d: D).F(X)(d) :ﬂ{gp:D—>E s Fp) < o}

We define the function IF : P(D) x (D — E) x (D — E) — (D — E) as follows
(with SC D, F,G:D — FE and v € D).

IF(S,F,G)(v) = F(v) ifves
IF(S, F,G)(v) Gv) ifvgs

Theorem A.2.1 IF is monotonic in its second and third argument.

92 Chapter A. Fixed-Point Definitions

Proof Let F < F’'. We must show that IF(S, F, G) < IF(S, F’, G) or equivalently
that for all v € D, IF(S, F,G)(v) < IF(S,F',G)(v) ssume that v € S. Then
we have that IF(S7 F,G)(v) = F(v) < F'(v) = IF(S, F’
v & S. Then we have that IF(S, F,G)(v) = G(v) < G(v
is clearly monotonic in its second argument.

The proof for the third argument is symmetrical to the one above.]

,G)(v). Now assume that
) = IF(S, F',G)(v). So IF

In the following definition we use a notion of parameterised (syntactic) patterns.
If p(d) is a pattern of sort D over variable d : E, then we write S(p, d) for the set
of all elements v € D such that there is a value for d that makes p(d) equal to v.
We write p~! for a function that, given a v € S(p,d), returns a value for d such
that p(d) = v

Definition =,. A (minimal) fixed-point definition for a function ¢ : D — E,
with E a lattice with infimum | g, is a finite sequence of equations of the form
o(p(d)) =4 F(p,d), where d is a variable of sort A, p(d) is a pattern of sort D
containing d and F : (D — E) x A — E monotonic in its first argument. The
semantics of such a definition

¢(po(do)) =u Folp,do)

on(dn) =p Falprdn)

is that ¢ = pX (d : D).IF(S(po,do), A’ : D.Fo(X,pg ' (d)), .. . TF(S(pp, dn), Ad' :
D.Fo(X,p; (d)),\d : D.Lg)...)(d).

A.3 Approximations

Given a fixed-point definition for function ¢ as in Definition A.2, we can define
approximations % of ¢ for ordinals « in the following way. Note that we use A
to denote limit ordinals.

©0(d) = 1g

et (po(do)) = Fole™,do)
G (pu(dn)) = Fulp® dy)
©*(d) = Ugcr¥*(d)

From [LNS82] we get that there is an 3 such that ¢# = @+ = ¢.

Appendix B

Preliminaries Proofs

In this appendix we give the proofs of the theorems from Chapter 2.

B.1 Definitions and Lemmata

We define the notion of overlap for sets of positions and show that we can replace
a set IT in a generalised substitution ¢[p]r with a set of positions of ¢ without any
overlap. By doing this we effectively remove all irrelevant positions from II.

Definition overlap. We say a set of positions II contains overlap if, and only if,
there are positions 7 and 7/, both different from ¢, such that 7 € Il and -7’ € II.

Lemma B.1.1 Let t be a term, I a set of positions and ¢ a function mapping
positions to terms. There is a non-overlapping set of positions II' C pos(t) N II
such that tlp]n = t{e)mw -

Proof Let II"” be IIN pos(t). By definition we have t[p]n = t[¢]m. Also, we have
that II” is finite due to the fact that terms are defined inductively.

Now let II' be defined as {m € II" : =3 (7" - 7" € II")}. Clearly I’ has
no overlap and II' C II"” = II N pos(¢). We now show that t[¢|r = t| e for all
finite 11" with I’ C I’ C I’ by induction on the size of II"" \ II'. Note that
II' C II” C II’ and that this will therefore complete the proof of Lemma B.1.1.

If |TI” \ II'| = 0 we have that II"" = II’ and thus it trivially holds that ¢[¢] =
tllm. I I\ II'| = n+ 1, for some natural number n, we have that there
is are 7 € II'’ and 7’ such that = - «’ € II". By definition this means that
tleln = t{plmn fx.ay- By induction we have that t[¢|m = t[p]m\ (x.r/y Which
trivially gives us t[p]m = t{e]m». O

We define more formally what it means for a sequential strategy to be full or
in-time. We use the following auxiliary function ; and ¥,.

94 Chapter B. Preliminaries Proofs

¥i([]) = 0

il >s) = TU(s)

Yi(R>s) = hi(s)

¥e(() = 0

1/),([> 3) = d’r(s)

Y(R1>s) = RUY(s)
A sequential strategy s for f is full when both ;(s) = {1,. (f)} and ¥, (s) =
R;. A sequential strategy s for f is in-time when for each s', s’ and R with
s =8+ (R > s") it holds that ({1,...,ar(f)} N UpeResspos(p)) C i(s').

B.2 Theorem 2.1.1

We must show that t|, € hnf(¢|,) for all # € pos(t) if, and only if, ¢ € nf(t).
Assume that t|, € hnf(¢|;) for all 7 € pos(t) and ¢ & nf(t). The latter means, by
definition, that there is a w such that ¢ — u, which means that there is a position
7 € pos(t), rewrite rules [— r if ¢ and substitution o such that ¢|. = lo, n(co)
and u = t[ro],. We also have that t|, € hnf(¢|;), which means that there are no
v, rewrite rule I’ — ' if ¢/ and substitution ¢’ such that t|, —* v, v = l'0’ and
n(c’o’). This is a contradiction as u does satisfy this condition.

In the same manner one can show that it is not possible that there is a posi-
tion m € pos(t) with ¢|, ¢ hnf(¢|;) and ¢t € nf(¢). This concludes the proof of
Theorem 2.1.1.

B.3 Theorem 2.1.2

We must show that, for all p =1 — 7 if ¢, ¢t and 1T with ITNesspos(l — r if ¢) = (),
we have that forall ¢ there exists a o with ¢ = lo and 5(co) if, and only if, there
exists a 7 with t[p]n = I7 and n(cr).

Take a o such that ¢t = lo and n(co). We define a 7 such that t[p]n = lo[e]n
It and o(x) = 7(z) for all z € var(c) (and thus co = ¢ and n(cr)). Wlth
Lemma B.1.1 we get a minimal IT' with lo[p|r = lo[p]n. Note that IT' is finite as
it is a subset of pos(t) (and terms are defined inductively).

We take 7(x) = o(x) for all x & pos,(I) \ esspos(p) and we take 7(x)
o(x)[Ay.o(m - y))inr . wrrerry for all z € pos,(I) \ esspos(p) and with I|, =
As var(c) € esspos(p), we trivially have that co = ¢7 and thus n(cr).

We define measure m on the positions of | as follows. For all m € pos,(l) we
define m(n) = 0 and for all = € pos¢(l) we define m(7) = 1+ T ({0} U{m(n -4) :

B.4. Corollary 2.1.3 95

7 -1 € pos(l)}). With induction we show that 1|z [Ay.o(7 - Y)|{x : rwremry = UnT
for all 7 € pos(l) (using m). If m(n) is 0, we have that {|, = = for some variable
x. If m € esspos(p) we have that o(z) = 7(z) and that {n’ : = -7’ € II'} = 0.
Therefore we trivially have that o (z)[Ay.o(7 - y)]p = o(x) = 7(z). U 7 & esspos(p),
then we have that o(x)[Ay.o(7 - y)] (. r.nrerry = T(x) per definition of 7.

Now, if m(mw) = n+ 1 for some natural number n, we have that 7= € pos(f) and
thus that |, = f(¢1,...,t,) for some symbol f and terms t1, ..., t, with t; = 1|
for 1 <4 < m. AsTII’ is finite, we have distinct 7; for 1 < ¢ < |I'| such that {’ : =
' € II'} = {m,...,mm} and thus that f(t1,...,tn)oAy.o(7 - Yz : mmremy =
ftio, . tmo) (-)]y - Lo(m TP, - As I N posg(l) = 0, we can
then distribute each of these substitutions inward an regroup them to obtain
ftiohyp(m-1-y))x - mrmemwys - tm0[Ay.o(m - m - Y)|iar : romenrerry). By in-
duction we have that t;0[A\y.o(7 i - y)|(x/ : gimrerry = 47 for all i with 1 < i <m.
This trivially means that I|-o[Ay.o(7 -)]z : morrerry = UxT.

For the case that we have a 7 with ¢[p]r = I7 and 7(c7T) we note that we can
write t as (t[¢]n)[Ax.t|]n. This way the proof obligation becomes an instantiation
of the one above.

B.4 Corollary 2.1.3

We must show that for all terms ¢ and u such that u € rewrg(t) we have that
t —* u. By Theorem 5.2.2 we have that there is a strategy (¢,<n) such that
rewr(t) = rewrs(t) and thus u € rewr(t). The latter means that ¢ —* u by
Theorem 5.2.1.

B.5 Corollary 2.1.4

We must show that if, for sequential strategy function ¢, it holds that ¢(f) is
full and in-time for all function symbols f, then we have that rewrs(t) C nf(t)
for all t. By Theorem 5.2.2 we have that there is a strategy (¢,sn) such that
rewr(t) = rewrs(t). As ¢ is full and in-time, we know that (¢,c,) is thorough by
Theorem 5.3.4. This, with Theorem 5.3.1, means that rewrs(¢) C nf(¢).

B.6 Corollary 2.1.5

We must show that if, for sequential strategy function ¢, it holds that ¢(f) is full
and in-time for all function symbols f, then we have that rewrg(¢) =) implies that
t —¢ for all ¢. By Theorem 5.2.2 we have that there is a strategy (s, ¢,) such that
rewr(t) = rewrs(t) and thus rewr(t) = (). As ¢ is full and in-time, we know that
(¢, <) is thorough by Theorem 5.3.4. This, with Theorem 5.3.2, means that ¢t —*.

96 Chapter B. Preliminaries Proofs

B.7 Theorem 2.1.6

We must show that the sequential strategies generated with strat are both full
and in-time (see Section B.1 for a more formal definition). That is, we must
show, for each function symbol f and finite set of rewrite rules Ry, that we have
that ¥ (strat(Ry, {1,...,ar(f)})) = {1,...,ar(f)}, Yu(strat(Rs, {1,...,ar(f)})) =
Ry and for all s, s’ and R with s++(R > s') = strat(Rs,{1,...,ar(f)}) that
({1,...,ar(f)}NM,cr esspos(p)) C ¢i(s). Note that we trivially have that (1 >
8) = IUwi(S), ¢1(R B>e 5) = 1/)1(8)7 wr(I g S) - wr(s) and wr(R D> 8) - RU1/fr(3)~

First we show that v;(strat(R, 1)) = I by induction on R. If R =), we have
that strat(0, [) = I . []. We then get (I >.[)) =TU([]) =TUD = 1.

If R #), we have that strat(R,I) =T >, J > strat(R\T, I\ J) with T = {p €
R : dep(p)NI=0and J={i : i € I A occ(i,R\T) =1jer occ(j, R\T)}. With
induction and the fact that J C I, we then have that ¢;(strat(R,I)) = (T >,
J >estrat(R\T,T\ J)) = JU¢i(strat(R\ T, I\ J))=JU I\ J)=1.

In the same manner as above we can trivially prove that i, (strat(R, 1)) = R.
Thus strat returns sequential strategies that are full.

To show that the strategies returned by strat are also in-time we observe that,
due to the definition of strat, each strategy of the form s++(R > s’) can be
written as s++strat(R’,I’) for some R' C Ry and I’ C {1,...,ar(f)} such that
R={p e R : dep(p)nI'" = 0}. Also, as we have shown above, we have
that ¢;(s++strat(R',I") = {1,...,ar(f)} and ¢i(s(R’,I')) = I' and thus that
{1,...;ar(f)} = ¢i(s) U I'. We trivially have that (J,czdep(p) € {1,...,ar(f)}
and, as dep(p) N I' = 0 for all p € R, that J,cpdep(p) < i(s). Finally,
by unfolding dep(p) and applying some calculus, we easily get ({1,...,ar(f)} N

U,er esspos(p)) S thi(s).

Appendix C

Match-Tree Proofs

In this appendix we give the proofs of the theorems and properties from Chapter 3.

C.1 Theorem 3.2.3

We generalise Theorem 3.2.3 to the following (where we write len(s) for the size
of stack s and s.i for the ith element on the stack):

len(s) = len(s’) A var(r) C (var(s)UV) =
W Oi(s, V), s’ o) ={rr : Vaev(r(x) = o(z)) A Vi(s'i = (s.4)7)}

From this Theorem 3.2.3 follows easily:

pn(l —r),t)
= { Definitions p and v, }
w ([l 0), [, 0)
= { Above statement, len([l]) = len([t]), var(r) C var(l) C (var([l])UV) }
{rr : Vaeo(r(x) = o(x)) A Vil[t].i = ([1].4)7)}
{ Simplification }
{rr : t=1I7}

Before we prove the above statement we note that VUvar(s) = W is an invariant
of v1(s,r, V). This is needed in order to be able to apply de induction hypothesis
later on. It can be clearly seen from the definition of 41 that V U var(s) is equal
on both sides of each equation.

With induction on the sum of the sizes of terms on the stack: case s = [].

w (il V), [l o)
= { Definition ~; }

98 Chapter C. Match-Tree Proofs

(R(r), [l,0)
{ Definition p’ }
{ro}
{var(r) CV }
{rr : Vaev(r(z) = o(x))}
{ Calculus }
{r7 : Vaev(r(z) = o(x)) A Vi([l.i = ([l9)7)}

The next caseis s = x > s”. Let s/ =t > s”. We use case distinction on z € V.
With case distinction on o(z) = ¢ for the case z € V' we get the following.

Wiz s, r V)t s, 0)
= { Definition 7{, x € V' }

W (M(z, 71 (5", 7, V), X), t > 8", 0)
= { Definition ¢/, o(z) =t }

w(s”,rV),s", o)
= { Induction Hypothesis }

{rt : Vyev(t(y) = o(y)) A Vi(s".i=(s".49)71)}
= { Calculus, x € V }

{rr : Vyev(t(y) = 0(y)) A 7(z) =0(x) A Vi(s"i=(s".0)1)}
= Hol@)=t}

{rt : Yyev(t(y) =0(y)) A 7(x) =t A Vi(s".i = (s".0)1)}
= { Calculus }

{rt : Yyev(t(y) = o(y)) A Vi((t > s").i = ((z > §").0)1)}

For the case z € V A o(x) # t we get the following.

wyi(x> s, r,V),t>s" o)
= { Definition 74, z € V' }
w (M(z, 71 (", r, V), X), t > s, o)
= { Definition p’, o(z) #1¢ }
(X5, 0)
= { Definition p' }

= { Calculus (note the false) }
{rm : Vyev(t(y) = o(y)) A false A V;(s".i=(s".i)r)}
= fo@#t}

C.2. Corollary 3.2.4 99

{rr « Vyev(r(y) = o(y)) A o(z) =t A Vi(s"i=(s".0)7)}
= { Calculus, zx € V }

{rr : Vyev(t(y) = 0a(y)) AN 7(z) =t A Vi(s".i=(s"9)7)}
= { Calculus }

{rr : Vyev(t(y) = ay)) A Vi((t > s").i= ((z > s").4)7)}

The case that € V is as follows.

Wiz s, rV),t>s",0)
= { Definition v{, x ¢ V' }

w(S(@,(s",r Vu{z})),t > 5", 0)
= { Definition p' }

w(s”r Vuie}), s, ole—t])
= { Induction Hypothesis }

{r7 : Vyevuiey(T(y) = olz = t(y)) A Vi(s".i = (s".i)7)}
= { Calculus }

{rr : Yyev(r(y) = oz —] (y)) A

T(z) = olx — t)(z) A Vi(s"i=(s"4)T)}

= { Calculus, x ¢ V }

{rr : Vyev(t(y) = a(y)) AN 7(z) =t A Vi(s".i=(s"9)7)}
= { Calculus }

{rr : Vyev(r(y) = a(y)) A Vi((t > s").i= ((z > s").i)7)}

This concludes the proof.

C.2 Corollary 3.2.4

We must show that + satisfies its specification. That is, we must show that
w(y(R),t) = {ro : Il - r € R AN t = lo} for all finite sets of rules R and
terms ¢. We prove this with induction on the size of R and use the fact that || is
well-defined for all cases v(R') || y1(p). If R is empty we get the following.

M(fY(@)v t)

n(X,t)

100 Chapter C. Match-Tree Proofs

{fro :l—=red At=lo}

When R = {p} UR’ for rewrite rule p = 1(R), we have the following.
n(y({p} U R), 1)
n(Y(RNAp}) [171(p), 1)
n(y (R A{p}), 1) U p(ra(p), t)
{ro : l—reR\{p} At=Ilo}U{roc : l>re{p} At=Ilo}
{ro : l—=re{plUR A t=lo}

This means + satisfies its specification.

C.3 Property 3.2.5

For (S'S) and with case distinction on the stack we get the following two deriva-
tions. First the case that s = []:

w (SH(,T), 1), 0)

,u/(S(CL', N(T)), []7 U)

Next s =t > .
W (S (2, T),t > s, 0)
w(T,s", oz —t])
W (N(T),t > ¢, oz —t])

w (S(x,N(T)),t > s, 0)

C.3. Property 3.2.5 101

This concludes the proof of (S9).
We use the same case distinction for (M M).

W (MY (2, T, U), [J, o)
W (U, [],0)

Mz, N(T), U), [],0)

For the case s =t > s’ we also use case distinction on o(x) = ¢. First the case
that the latter does not hold.

W MYz, T,U),t > s, 0)
p (Ut s, 0)

w (M(z,N(T),U),t > s, 0)

Next the case that o(x) =t does hold.

W MYz, T,U),t > s, 0)
M/(T7 S/’O-)
#(N(T),t > 5" 0)

w Mz, N(T),U),t > ¢, 0)

This concludes the proof of (M!M).
Also for (rR) we use case distinction on the stack.

#(R(r), 1], o)
{ro}

(R({r}), [, o)
And finally:

w(R(r),t> ¢ 0)

102 Chapter C. Match-Tree Proofs

wW(R({r}),t> s 0)

This concludes the proof of (rR).

C.4 Theorem 3.2.7

For this proof we limit ourselves to the most interesting/complicated cases. We
use induction on the structure of the arguments of ||
Let n(to). We then have the following.

W(CHTT) || U,s,0)
= { Definition || }
W(CET | U.T | U), 5,0)
= { Definition u, n(to) }
W (T U,s,o0)
= { Induction Hypothesis }
w(T,s,0)Jp'(U,s, o)
= { Definition u, n(to) }
w (C(t, T, T"),s,0) U (U,s,0)
In the case that — n(to) we have a similar derivation.
Note that a similar technique can be used for M and S where we can limit U to
the cases as observed in Section 3.4. The same holds for E where one has to use

the fact that most nodes can be eliminated if they occur in the wrong subtree of
E:

W(E(T,T") IN(U), [], o)
= { Definition || }
W (E(T|[[NU),T"),[],0)
{ Definition p }
W (T[], o)
{ Definition y }
W (T, [, 0) U/ (N(U), [], o)
= { Definition x }
W (E(T,T"),[],0) U (N(U), [l 0)
We conclude with combination of F and N. Let the stack have at least one
element.

C.5. Theorem 3.3.1 103
W (F(S,T,T) [INU), t > 5,0)
= { Definition || }
W (F(f, T | NTD(U), T | N(U)), t > 5,0)
= { Case distinction on ¢ }
W (FOf, T || N=O@), T | N(U)), x> s,0) if t=2
W (FCLT |N=O @), T | N(U), if
flt1, ... tn) > s,0) if t=f(t1,...,tn)
WECLT IN=O@), T | N)), if
g(t1, ... tn) > 8,0) if t=g(t1,...,th) N f#g
= { Definition y }
wW(TINU), x> s,0) if t=ux
W(T[[NSDU) by > >ty > s,0) if = f(t,..., tn)
wW(TINU),g(t1, ... tn) > s,0) if t=g(t1,....th) N f#g
= { Induction Hypothesis }
wW(T x> s,0) U (NU),z>s,0) if t=ux
W(T,ty > ... t, > s,0)Up (N, if
t1>... D>ty > s,0) if t=f(t1,...,tn)
wW(T gty ... ty) > s,0)Up (NU), if
g(t1, ... tn) > 8,0) if t=g(t1,....,tn) N f#g
= { Definition y }
W(F(,T,T), 2> s,0) U/ (NU),z > s,0) ift=ux
W (F(f,T,T), f(t1,...,tn) > 8,0)U if
W' (U, s,0) if t=f(t1,...,tn)
wW(F(f,T,T),9(t1, ... tn) > s,0)U if
W (NU), g(t1,...,tn) > 8,0) if t=g(t1,....,tn) N f#yg
= { Definition y }
W(F(f,T,7), 2> s,0) U/ (NU),z > s,0) ift==x
W, T, T, f(t1, ..., tp) > s,0)U if
w (N, f(t1, ... tn) > s,0) if t=f(t1,...,tn)
u’((f, T, T, g(t1,. .., t,)Dsa)U if
W (NU), gt ... tn) > s,0) if t=g(t1,....tn) A f#g
= { Case elimination }

W (E(fT, T, t > s,0) Up' (NU),

t>s,0)

C.5 Theorem 3.3.

1

The proof of Theorem 3.3.1 follows the same lines as that of Theorem 3.2.3 and is

therefore not given here.

104 Chapter C. Match-Tree Proofs

C.6 Property 3.3.3
We must show that R'(R) =, R({r : | — r € R}) or, equivalently, /(R'(R),s,0) =

W (R({r : I — r € R}), s,0) for all stacks s and substitutions o. Assume that
s =[]. Then we get the following.

H (R(R),[],0)
{roc : l—-reR}
{r'ec : r"e{r : | = r e R}}

W (R({r : I —reR}),[,0)

If s = ¢ 1> &' for some term ¢ and stack s’, then we have the following.

W (R(R),t1> 5", 0)

W (R{r : l->reR}),t>s, o)

C.7 Theorem 3.3.4

We must show that for all finite sets R of rewrite rules, priority functions ¢
and terms t we have that u,(F(R),¢,t) = p(prior(F(R), ¢),t) or, equivalently,
p(prior(F¥(R),), t) ={ro : t=lo Nl —=rep{l'! 5" € R : t=100})}. The
proof of this follows the same lines as the proof of Theorem 3.2.3 and is therefore
not given here.

C.8 Theorem 3.4.1

We must show that reduce(T") =, T'. In this proof we use the following predicates.
Definition Pr.

Pe(F,s)=Viuo(fEF Ns=tr>s = teV V hs(t)#f)
Definition Py.

PF(Mt,Mf,S,O') = Vt75/(5 =t> s’ = Vmez\/jt(a({l}) = t) AN Vmer(a(x) 7& t))

C.8. Theorem 3.4.1 105

To prove Theorem 3.4.1 we simultaneously have to prove the following lemmas.

Lemma C.8.1.
P:(F,s) = p/(reducep(T, F),s,0) = i/ (T,s,0)
Lemma C.8.2.

reduces (T,) =, T
reduces(T, {z} US) =, S(z,T[z/S])

Lemma C.8.3.
Pu(M;, My, s,0) = ' (veducem(T, My, My),s,0) = i/ (T, s,0)
First, however, we prove the following lemmas.

Lemma C.8.4. Vpy(T = reducer(U,F) = Pg(F,s,0) is an invariant of
W (T,s,0)

Proof For the introductions of reducer in reduce, reduces and reducey the invari-
ant holds trivially as Pg(0, s) holds for every s and o.

We look at the case that we have p/(reducer (F(f,T,U), F), s, o) with Pr(F,s). If
f € F, then we get ' (reducer (U, F), s,0) and must show that Pg(F, s) holds. The
latter is trivially the case. If f ¢ F, then we get ' (F(f, reduce(T),reduceg(U, F U
{f})),s,0). The only interesting case here is when s = g(t1,...,t,) > s with
g # f. In this case we get p/(reducep(U, F U{f}),g(t1,...,tn) > §',0) for which
we must show that Pr(FU{f},g(t1,...,t,) > '). The latter is trivially equivalent
to Pr(F,s) A (g(t1,...,tn) €V V hs(g(t1,...,tn)) # f). We have that Pr(F,s),
hs(g(t1,...,tn)) = g and g # f, which means we are done. o

Lemma C.8.5. Yy, v, (T = reducem(U, My, My) = Pu(M;, My, s,0) is an
invariant of u/(T), s, o)

Proof For the introduction of reducey in reduce the invariant holds trivially as
Pu(0,0,s,0) holds for every s and o.

We look at the case that we have p/(reducem(M(x,T,U), My, My),s,0) with
Pu(My, My, s,0). If x € M,;, then we get p/(reducem(T, My, My), s,0) and must
show that Pu(M¢, My, s,0) holds. The latter is trivially the case. If x € My,
then a similar reasoning can be used. In the case that x ¢ M; U M; we get
' (M(z, reducem (7', My U {x}, My),reducem (U, My, My U {z})),s,o). The only in-
teresting cases here are when s =t > §'. If o(z) = t, we get p'(reducem (T, M; U
{z}, My),t > ¢, 0) for which we must show that Py(M;U{z}, My, t > s',0). The
latter is trivially equivalent to Pu(My, My, s,0) A o(xz) =t. We have that both
Pu(My, My, s,0) and o(z) = t hold, which means we are done. The case that
o(x) # t follows a similar reasoning. ad

106 Chapter C. Match-Tree Proofs

We now prove Theorem 3.4.1 together with Lemma C.8.1, Lemma C.8.2 and
Lemma C.8.3. For this proof we use induction on the structure of the (tree)
argument.

Many cases are straightforward (by application of the induction hypothesis or
because they are of the form reduce, (7, ...) = reducey(T,...); the latter can be
ignored due to the absence of cyclic dependencies) and therefore not given here.

First we look at reduceg(F(f,T,U), F). Let f € F:

w (reduceg (F(f,T,U), F),s,0)
= {feF}
w (reduceg (U, F), s,0)
= { Induction Hypothesis }
W(U,5,0)
= { Case distinction on s, Definition u,

Uis aF, Xor N (conform to the observation in Section 3.4) }
0 if s=]]
WU t>s,o) if s=t>s
= { Definition u, Pr(F,s) implies t € Vars V hs(t) # f }
W(F(f,T,U),[l,0 if s =]
W(F(f,T,U),t>s,0) if s=t>s
= { Case elimination }
W(F(f,T,U),s,0)

If f ¢ F we have the following.

w (reducer (F(f,T,U), F),s,0)
{feF}
W (F(f, reduce(T"), reducer (U, F U f), s,0)
{ Induction Hypothesis, Lemma C.8.4 }
W (F(f,T,U),s,0)

Next we consider the case reduces(N(T"), V). The cases for reduces(X,V) and
reduces(F(f,T,U), V) follow the same lines and are therefore not given here. Let

 (reduces(N(T),0), s, 0)
= { Definition reduces }
w (reduce(N(T)), s,0)

For the case V = {z} U S we get the following.

C.8. Theorem 3.4.1 107

w (reduces(N(T),{z} U S), s, o)
= { Definition reduces }

' (S(x, reduce(N(T)[z/V])), s,0)
= { Definition [/], reduce }

1 (S(x, N(reduce(T'[2/V]))), s, 0)
= { Induction Hypothesis }

W (S N(T[z/ V), 5,0)
= { Definition [/] }

(S(z,N(T)[x/V]), s, 0)

The following case is reduces(S(z,T), V).

w (reduces(S(z,T),V), s,0)
{ Definition reduces }

w (reduces (T, V U {z}),s, o)

= { Induction Hypothesis }
W (S, Tl V1), 5,0)

Next we consider the case reducem(M(z, T,U), My, M f). Let x € M,.

w (reducem(M(z, T, U), My, My), s, 0)
= { Definition reducey }
w (reducem (T, My, My), s, 0)
= { Induction Hypothesis, Lemma C.8.5 }
W (T,5,0)
= { Definition px, invariant and € M, imply s =t > s’ = o(z) =t}
WMz, T,U), s,0)

The case that x € My is similar. Finally the case that = & M; U M.

w (reducem(M(z, T, U), My, My), s, 0)

= { Definition reducem }

' (M(z, reducem (T, My U {z}, My), reducem (U, My, My U {x})), s, 0)
{ Induction Hypothesis, Lemma C.8.5 }

W (M(z,T,U),s,0)

This concludes the proof of Theorem 3.4.1.

108 Chapter C. Match-Tree Proofs

C.9 Theorem 3.4.2

We must show that clean(T") =, T. To prove this theorem we use the following
definition of free variables in match trees.

Definition fv.

fv(X) = 0

tv(F(f,T,U)) = 1fv(T)Utv(U)
M) = (D) {a}

ftv(M(z, T,U)) = 1v(T)Utv(U)U{x}
tv(C(t, T,U)) = 1v(T)Utv(U)Uvar(t)
fv(N(T)) = fv(T)

tv(R(R) = var(R)

fv(E(T,U)) = ftv(T)Utv(U)

We then have the following lemma.

Lemma C.9.1.
V =fv(U) where (U, V) = clean(T)

Proof This follows in a straightforward manner from the definition of clean (note
the similarity with the definition of fv). m|

We also have the following property.

Property C.9.1 For match trees constructed with v and reduce we have the fol-
lowing properties.

(Selm) S(z,T) =,T ifxgv(T)
(Melm) M(z,T,T)=,T

(Celm) C(t,T,T)
(ETX) E(T,X)
(EXT) EXT) =

T
uT
T
Proof We prove (Selm) with case distinction on the stack. First the case s = [

W (S(z,T),[],0)
= { Definition y }

= { T is an F, X or N node (conform to the observation in Section 3.4) }
w(T,[],0)

For the case that s = t > s’ we have that u/(S(x,T),t > §',0) = p/(T, ¢, o[z — t]).
We prove that p/ (T, s”,0) = p/(T, 8", o[z — t]) which trivially concludes the proof
of (Selm). With induction on the structure of T" we get the following cases.

C.9. Theorem 3.4.2 109

e T = X; this case holds trivially.
e T =F(f,UU’); trivial with induction hypothesis.
e T =S(y,U); this trivially holds when s” =[]. If s =u > ¢ and y = z, we
can derive the following:
W (S(z,U),ur>s", oz —t])
W (Uur> 8" oz — t][z — u])

WU, urs s olr— u))

W (S(z,U),ur>s", o)

The case that y # x is similar to the case below.

o T = M(y,U,U’); this trivially holds when s” = []. If s = u > ¢, we can
derive the following:

WMy, U, U"), u > 8", olx — 1))
{VisUif o[z + t](y) = v and U’ otherwise }
W (Viu> s oz —t])
{ Induction Hypothesis }
W (Viu> s o)
{z & tv(M(y,U,U")) implies y # = and thus o[z — t](y)
WMy, U, U"),u> 8", 0)

a(y) }

e T = C(«,U,U’); this case is similar to the case above, where 7(y) = u is
replaced with v/ —* true (for all 7).

e T = N(U); trivial with induction hypothesis.

e T = R(R); this trivially holds when s # [|. If s =[], we can derive the
following:

#(R(R), [, oz — 1))
= { Definition u }
{r(clz —1t]) : 7€ R}
= { = ¢ fv(R(R)) implies x & var(r) for all r € R and

thus r(o[z — t]) = ro for all such r }

110 Chapter C. Match-Tree Proofs

{ro : r € R}
= { Definition p }
#(R(R),[],0)
e T =E(U,U’"); trivial with induction hypothesis.
We prove (Melm) with case distinction on the stack. First the case s = []:

(M(z,T,T),[,0)
{ Definition x }

{Tisan S, F, X or N node (conform to the observation in Section 3.4) }
w(T, [, 0)

Next the case s =t > s'.

W (M(z, T,T),t > s, 0)
= { Definition y }
w(T, te> s o)

This concludes the proof of (Melm). The proofs of (Celm) and (ETX) are similar.
For (EXT) we also use case distinction on the stack. First the case s = [|:

M/(E(XaT)7 []7 0)

= { Definition x }
W (T[], 0)
Next the case s =t > '
w(EXX,T),t > ¢, 0)
= { Definition x }

Xt s o)
= { Definition y }

= { T is an R node (conform to the observation in Section 3.4) }
w(T, te> s, o)
O

With Lemma C.9.1 and Property C.9.1 it is quite straightforward to show that
Theorem 3.4.2 holds. We therefore do not do so here.

Appendix D

Temporary-Term-
Construction
Proofs

In this appendix we give the proofs of the theorems from Chapter 4.

D.1 Lemmata

First we show that if the boolean argument of our term-construction function is
true, then the boolean in the result is also true. That is, if we ask for a normal
form, ithe function should return something it “thinks” is a normal form.

Lemma D.1.1 For all terms t, substitutions o and variable sets N we have that
©N(t,true) = (u,true) for some term u.

Proof This follows trivially from the defintion by induction on the structure of ¢;
each equality with true as second argument of ¢ on the left-hand side has true
as the second element of the result on the right-hand side. O

Next we show that if the boolean part of the result of our term-construction

function is true (i.e. indicates that the term part should be in normal form), then
the term part of the result is indeed a normal form.

Lemma D.1.2 For all termst and u, substitutions o, variable sets N and booleans
b we have that if PN (t,b) = (u,true) then u € nf(u).

Proof By induction on the size of t:

112 Chapter D. Temporary-Term-Construction Proofs

e t = x; we then either have x € N or x ¢ N. The first case means that u =
o(x)and o(x) € nf(o(x)). In the second case we have that u = rewrite(o(x)).
By definition we have that rewrite(o(z)) € nf(o(x)).

o t = f(t1,...,tp); we then either have Ry = () or Ry # (). The first case means
that v = f(t},...,t),). If b = false, we have that V1<;<,(b;) by definition.
If b = true, we get Vi<i<n(b;) by Lemma D.1.1. This means, by induction,
that ¢, € nf(t;) for all i. Note that we also have that the strategy for f
is [{1,...,n}] due to Ry = 0. Therefore we have that nf(f(¢},...,t,)) =

Ff(t)),....,nf(t))) = f(t),....t).

In the second case (Ry # () we have that b = true. This means we have
that u = rewritel ' 15"/ bi}(t’l, oo th) with (8, b;) = N (t;, false) for all
7 such that 1 < 4 < n. By induction we then have that if b;, then also
t! € nf(t}), for all i. But then by definition rewrite}i Hsisn bl ¢y e
nf (f(t),...,t))).

D.2 Theorem 4.3.1

We must show that, for all terms ¢ and u, substitutions o, sets of variables N, and
booleans b and ¢, if Y (t,b) = (u, ¢), then to —* u. By induction on the size of t:

e ¢t = x; we then either have =0V x € N or x € N. The first case means that
u = o(x) and thus trivially o(x) —* o(x). In the second case we have that
u = rewrite(o(z)). By definition we have that o(z) —* rewrite(o(x)).

e t = f(t1,...,ts); we then either have =bV Ry = () or Ry # 0. The first
case means that u = f/(t),...,t.) with f' = f or f/ = fle:1SisnAbi} apd
(th, b;) = @N(t;,b) for all i such that 1 < i < n. By induction we then
have that t;0 —* t; for all i. Then we trivially have that f(t1,...,t,)0 =
fltro, ... tho) —=* f'(t),...,t,). In the second case we have that u =
rewritel}l"'b" (th,...,t) with (t,,b;) = @ (t;,false) for all i such that 1 <
i < n. By induction we then have that t,c —* t; for all 7. Thus also
flt1, .. tp)o = f(tro,...,tho) =* f(t,...,t,). By Lemma D.1.2 we ad-
ditionally have that ¢, € nf(¢;) for all ¢ with b,. But then we have that
flty, ..., t) —=* rewritcl}l"'b" (t),...,t)) by definition.

r¥n

D.3 Theorem 4.3.2

We must show that, for all terms ¢t and u, substitutions o, sets of variables IV, and
booleans b and ¢, if Y (t,b) = (u,c) and bV ¢, then u € nf(to).

D.4. Theorem 4.3.3 113

By Lemma D.1.1 we have that if b = true, then also ¢ = true. That is, we have
that b V ¢ implies ¢. This means, by Lemma D.1.2, that u € nf(u). Furthermore,
by Theorem 4.3.1 we have that tc —* u. Then we have u € nf(tc) by definition.

D.4 Theorem 4.3.3

We must show that, assuming ¢ is a term, o a substitution and N a set of variables,
we have that ¢ (¢, false) = (u, true) for some u if, and only if, ¢ is either a variable
x such that z € N, or t = f(t1,...,t,) with Ry = () and @2 (¢;, false) = (u;, true)
for some terms u; (with 1 < i < n). Furthermore we must show that we also have
that if ¥ (¢, false) = (u, true) for some term u, then u = to.

Assume that oY (¢, false) = (u, true). By induction on the structure of ¢:

e t = x for some variable z; this means that ¢ (¢, false) = (o(z),z € N) and
thus u = o(z) and x € N. Also, u = o(z) = zo = to.

ot = f(t1,...,t,) for some terms function symbol f and terms ¢; with 1 <
i < n; this, means that) (¢, false) = (f(t},....t,),true), Ry = () and
©N(t;,false) = (t,,true) for all 7 such that 1 < 4 < n. Then also, by
induction, we have that t; = t;o for all ¢ with 1 < ¢ < n. And then

flty, ... 1) = f(tio,... . tho) = f(t1,...,tn)o = to.

Now, assume a variable x such that z € N. Then we have ¢ (¢, false) = (o(x),x €
N) = {(o(z), true). Finally, assume a function symbol f without any rewrite rules
(i.e. Ry = 0) and terms ¢; with X (¢;, false) = (t/, true) for some terms ¢ with 1 <
i <n (where n is the arity of f). Then we trivially have ¢ (f(t1,...,t,), false) =
(f(ty,...,t,),true).

114 Chapter D. Temporary-Term-Construction Proofs

Appendix E

Strategy Tree Proofs

In this appendix we give the proofs of the theorems and properties from Chapter 5.

E.1 Definitions and Lemmata

We define approximations of rewr according to Section A.3 as follows. Here we
write A for limit ordinals.

rewr®(t) = eval®(¢t(hs™(2)),1)

rewrg (1) — evalf (s (st (1),)

eval® (T, t) = 0

eval((T, t) = 0

eval* M (F(m,), 1) = eval®(p(hs(t|x)),?) if ™ € posg(t)
eval* T (F(m,), t) = eval®(p(L),1) if ¢ posg(t)
CV&I(H_I (H(Hv T)? t) = UcpErewrfﬁ‘ (¢,11) eval® (T? t[@]n)

eva1a+1 (NF(’ T)? t) = Uperewrf"(t,ﬂ) evala (T3 t[(p]n)

eval ™ (T(R,T),t) = Uweappe (r,¢) TeWr* (w) if app®(R,t) #0
eval* ™ (T(R,T),t) = eval®(T,t) if app®(R,t) =0
eval®™ ! (E, t) = {t}

eval® (X, 1) 0

eval? ™ (F(m,), t) evalp (o(hs(t|x)),t) if m € pos;(t)
eval® ™ (F(m,), 1) = evaly(eo(L),t) if ¢ posg(t)
evall VM (H(IL, T),t) = Uq;erewrfg(t,n) evaly (T, t[]n)

(continued on next page)

116 Chapter E. Strategy Tree Proofs

6V&1ﬁ+1 (NF(H’ T)’ t) = UgaErewrf“(t,H) eva‘lﬁ (Tv t[@]l’l)
evalp ™ (T(R,T),t) = Ucappe(rs) TeVTH (1) if app®(R,t) # 0
evall TN (T(R, T),t) = eval}(T,t) if app®(R,t) =0
eval? 1 (E, 1) = {t}
eval? (X,))
eval® (T, t) = Upey eval®(T,t)
eval) (T, t) = U,y evali (T, 1)
with
app® (R, t) = {u:l—-rifceRAt=loc N u=ro A true € rewr*(co)}
rewrf(t,II) = {p : Vaen(m € pos(t) = o(n) € rewr*(t|:))}
rewrfp (¢,II) = {p : Vaen(m € pos(t) = ¢(n) € rewr(t|x))}

Similarly, we have the following approximations for rewrs.

rewr®(t) = eval®(¢*(hst(¢)),t)

evall(¢,t) = 0

evaly ™ ([],¢) = {&

eval? ™ (I > ¢, t) = Uwaewrf?(t)l) evald (¢, t[Y]r)

eval? ™ (R > ¢, t) = Uveappe (r,) Tewrs (u) if app®(R,t) # 0

eval> ™ (R> ¢, t) = eval®(s,t) if app®(R,t) =0

eval? (¢, t) = Uacrevall (s, t)

with

appd(R,t) = {ro :l—rifce R A t=1lo A true € rewr$(co)}
rewrf$ (6, 1) = {¢ : Vier(i € pos(t) = (i) € rewr2(t];))}

Next we prove a few lemmas that we need for the theorems below. First we show
that if a subterm of a term t can be rewritten, then ¢ itself can also be rewritten
(by rewriting the subterm in the context of ¢).

Lemma E.1.1 If t|, —% u for some m € pos(t), then also t —% tlul.. Also, if
tlx =% @(m) for all m € pos(t) N1II, then t —7% t[e]n.

E.1. Definitions and Lemmata 117

Proof The first statement follows trivially from the definition of —r with induc-
tion on the number of steps in —7%. We focus on the second statement.

With Lemma B.1.1 we have that there is a non-overlapping II'’ C pos(t) N II
such that t[p]n = t[¢]m. Then by induction on the size of II' (note that II’ is
finite as there are only a finite number of positions in ¢ per definition) we show
that ¢ —* t[¢]m:

e IT' = (); this means that t[¢]n = ¢. We trivially have that ¢ —7, t.

o II' =TI" U {7}, with 7 ¢ II"”; this means that t[@]ruray = (tle(m)]r) @]
By definition we have that t|, —% ¢(7) and, from the above, also t —7}
tlp(m)]r. By induction we have that t[o(m)]. =% (tle(m)]x)[elns. (Note
that IT"” does not contain any positions 7 - ' that might be invalidated by
the substitution at 7.)

O

Now we show that if you take a subterm of a term ¢ to which a substitution is
applied, you can also apply a related substitution to a subterm of ¢.

Lemma E.1.2 Let m € pos(t). We have (t[o]n)|x = (t|x)[Ax.o(T - 2)] (5 : worremy
if there are no © and 7 with # =7’ - 7" and «’ € I

Proof With Lemma B.1.1 we have that there is a II'’ C II N pos(t) such that
t[eln = t[e]nr. With induction on the size of II':

e II' = (; this trivially means (¢[¢]p)|x = t|x = (t]x)[Az.o(7 - T)]g-

o I' = II" U {n'} with 7/ ¢ II"; this means we have (t[p]rufry)lr =
((t[e(7")]a)@l)=, which, by the induction hypothesis, is equal to the term
((tlo(m)]x)|x) Az o(- @) g5 o omrrervy. We know per assumption that 7/
is not a prefix of m and we either have that 7 is a prefix of «#’ or not. If
7 is a prefix of 7’ = 7w - 7" (for some 7”), we must show that (¢'[u]./)| =
(t'|x)[u]z (for all t') to get (t|x)[p(m - 7")]xn[Az.0(7 -)] {0 . gomrrenry and
thus (t|)[Az.o(7 -)] (7 : morrerry. With induction on the structure of ¢

e t' = x for some variable z; this means that both 7 and 7’ must be ¢
which trivially gives 7’ = 7" and (¢'[u]r)|x = t'[u]lr = (t|) [t
o ' = f(t1,...,t,) for some symbol f and terms t1,...,t,; there are two
cases:
e T = ¢; which is similar to the case that t’ = .

o 1 = i.7"" for some index ¢ and position w’”; this means that we have

that (¢'[u)x) |z = f(E1, - tilw]ammr, o tn) e = @u)gmsmm) |z
With induction we get (¢;[u]rr.nr)| e = ilwr) U] =) [t] 5.

118 Chapter E. Strategy Tree Proofs

If 7 is not a prefix of 7/, then we show that ('[u],)|r = t'|, with trivially
gives us (t|)[Ax.o(7 - @) (7 . moxrrerry. With induction on the structure of
t':

e t = x for some variable x; this means that both m and 7’ must be ¢
which contradicts the assumption.

e t = f(ty,...,t,) for some symbol f and terms ¢1,...,t,; there are tree
cases:

e 7 =¢c or ™ = ¢; which both contradict the assumptions.

e m =147 and 7’ = ¢.7"" for some index 7 and positions 7" and 7"’

such that 7' is not a prefix of 7’”’; this means that we have that

(# [ulx)|z = (b1, tilo (@)) e = (Galo (7)) | By
induction we have that (¢;[@(7')] 7)|a = ti|wr and trivially ;| =
|7

e 7 =471 and 7’ = j.n"" for some indices i and j and positions 7’
and 7"’ such that ¢ # j; this means that we have that (t[o (7)))= =
flta, .. tile(@)am, .. itn)lr = tjlar. Trivially we have that

/
ti'rr”’ =t |7r~

O

Next, we show that when substituting a head normal form of ¢ by another head
normal form of ¢, you can also just substitute just those parts of these head normal
forms that differ.

Lemma E.1.3 Let t be a term, ¢ a function mapping positions to terms and I1
and TI' sets of positions such that 11 is non-overlapping and a subset of pos(t),
Vretinpost) (9(m) € hnf(t|)) and Viemwnpos) (tlx € hnf(t|r)). Then there are
¢’ and non-overlapping 11" C pos(t) such that we have that " NII' = § and
tleln = tlelne

Proof We prove this with induction on IT. As measure we use the smallest position
in ITNTI" where we say a position 7 is smaller then 7’ if 7 contains less indices than
7’ or they have the same amount but first index in which they differ is smaller
for m than for n/. That is, the order on set of positions we use is such that if
NI = @, II is a smallest element and all other sets I are ordered according
to the smallest position in IT N II" where those with a larger smallest position are
smaller.

IFIINTII = @ then IT” = II and ¢’ = ¢ satisfies our goal. Otherwise, let 7 be
the smallest position in II NII'. With induction on ¢:

e ¢t = x; this means that 7 = ¢ and ¢(7) = z and thus t[p(n)], = t. We
therefore trivially have that ¢[p|n = t[¢]m\ ()} and with induction the desired
IT” and .

E.2. Theorem 5.2.1 119

o t = f(ty,...,t,); we have the following two cases:

e 7 = ¢; ast|, = tisahead normal form, we have that ¢(7) must be of the
form f(uy,...,u,). This means that t[o(m)]x = tfu1]r1 .. [tn]rn and
thus tlpln = tlplr - 1= wi]...[1-n = up)lnug,..ny. As (IT\ {7}) U
{1,...,n} is smaller than II, we get II"” and ¢’ that satisfy our goal by
induction.

e 7 = 4 -7'; this means that 1 < i < n. We have that t[p(7)], =
Fr, . timn talo(m)]nr tivas ooy tn), tilo(m)]e = tilAz.p(i -)] 7y and
for the latter we have, by induction, an equivalent ¢;[¢"]~ for some
" and ¢"” with II"” C pos(t;) and II" N {x" : i-7" € II'} = 0.
We then have a ¢/, with ¢"'(i.7") = ¢'(x") for all 7”7 and "' (7"") =
(") for all positions 7" that do not start with index 4, such that
f(tl, NN 7ti—17 ti[@//]nll/,ti+1, PN ,tn) = t[gﬁ”’]{i.ﬂ.u Sl €I} - As we have
that t[(p///]{i'ﬂ'” s/ eIl } [@]H\{ﬂ} is equal to t[solll]{i-ﬂ'” s/ eIl } [QOI/I}H\{W}
(there is no other position in II that starts with index i), we trivially
have that this is equivalent to t[¢"’] 1\ {x})ui-n : =7emy. By induction
we then get a IT” and ¢’ that satisfies our goal.

O

Finally, the following lemma states that there can be no difference between a
pattern and a term if the term matches the pattern.

Lemma E.1.1. Let ¢ and u be terms and o a substitution. If ¢ = uo, then

I(t,u) = 0.

Proof To show this we prove, with induction on the structure of u, that if ¢t = uo,
then 9(t,u,m) = @ for all positions m. From this it trivially follows that also
d(t,u) = (. The case that u = =z, for some variable x, is trivially satisfied.
Let w = f(uy,...,uy) for some function symbol f and terms ui,...,u,. We
have that ¢ = f(uy,...,un)o0 = f(uio,...,up0). This means that O(t,u,m) =
Uicicn O(wio, ui,m - i). As wjo = w;o for all ¢ with 1 < i < n, we have that
(u;o,u;, m- i) = () by induction. Therefore, O(t, u,) = () holds as well. O

E.2 Theorem 5.2.1

We must show that, for all term ¢ and v with u € rewr(t), we have that t —* w.
We prove this by showing that if u € eval®(T,t) Uevaly (T, t), we have that ¢ —* u
with transfinite induction on a. For the case a = 0 we have that eval®(T,t) = 0
and evalp (T, t) = () and thus that the statement is trivially satisfied. For the case
a = [+ 1 we have the following cases (note that we trivially have x —* wu for
u € rewr®(x)):

e eval®(F(m, %), t), which is either eval®(4(hs(t|)),t) or eval® (¢(L),t). With
induction we trivially have that the statement is satisfied.

120 Chapter E. Strategy Tree Proofs

o evala(H(H, U), t), or Uw€{¢/ : Vren(wepos(t) = w’(w)erewrs(t\w))} evalﬁ(T7 t[’l/)]l'[)
Let ¢ be such that Vyen(m € pos(t) = (n) € rewrf(t\,r)). By induction
we have that for all # € II N pos(t) we have that t|, —* 1(w). Then by
Lemma E.1.1 we trivially have that ¢ —* ¢[¢)]. Finally, with induction we
have that] —* ' for all u/ € eval® (T, ¢[1]1;) and thus trivially ¢ —* u.

e The proof for eval®(NF(II,U)) is the same as for eval®(H(IL, U)) with evalfj
replaced by eval®.

e eval®(T(R,U),t). Assume that there are rules in R that can be applied to t.

Then evalﬁ(T(R’ T)7 t) = Ul—»r if c€R A t=lo A true€rewr(co) evalﬁ (§(hS(7“0')), TU)'
For each rule | — r if ¢ € R and substitutions o with true € rewr(co) we
trivially have that ¢ — ro and by induction we have that ro —* .

Now assume that there is no rule in R that can be applied to t. This case is
trivial.

e eval®(E,t), which is {¢t}. We trivially have that ¢t —* ¢
e eval®(X,t), which is @ by definition.

The cases for evalp the similar. The case where « is a limit ordinal is trivially
satisfied.

E.3 Theorem 5.2.2

We need to show that rewr(¢) = rewrs(t) or, equivalently, eval(gé(hsj‘(t)),t) =
evalg (¢ (hst(2)), ¢). Ifhs™(t) = L, we get eval(E, t) = {t} = evaly([],#). Otherwise
we get eval(p(s(hs(t))),t) = evals(c(hs(t)),t). We prove this by showing that
eval(p(c),t) = evals(c,t) by transfinite induction on the approximations « of the
definitions of eval and eval.

For the case o = 0 we have that eval®(p(c),t) = 0 = evalZ(s,t). For the case
that a = 8+ 1 we have the following cases.

e ¢ = []; this means that we get eval®(p([]), t) = eval®(E, t) = {t} = eval{([], t).

e ¢ = I > ¢'; this means that eval®(¢o(I > ¢'),t) = eval®*(NF(I, o(¢")),t) =
Uperewrts (2,1) eval® (p(¢"), t[¢]r) and also that we have eval® (I > ¢\ t) =
Usperewrt? (t.1) eval? (¢/, t[1]1). By induction we have that eval® (o(<’), t[p];) =

eval? (¢, t[¢]1) for all 1), so it remains to show that rewrf? (¢, I') = rewrf? (¢, I),
which is trivial.

e ¢ = R > ¢'; this means that we get eval®(p(R > ¢’),t) = eval*(T(R, ¢(¢")), t).
Now assume that app? (R, t) =). In that case we have eval® ((R, ("), t) =
eval® (p(¢’), 1) and the by induction equivalent eval® (R > ¢/,) = evaulé3 (¢,).

E.4. Theorem 5.2.8 121

If app” (R,t) # 0, then eval®*(T(R,p(s")),t) = Uueappﬁ(&t) rewrﬁ(u) =
Uvcapp? (r.1) evalﬂ(cj; (hs™(u)),u) and on the other hand eval®(R > ¢/, t) =
Uvcapp? (r,) rewr? (u) = Uweapp? (r,1) eval® (¢t (hs™ (), u). We trivially have
that app®(R,t) = app”(R,t) and by induction that evalﬁ(qj;(hsl(u)),u) =
eval? (¢t (hs™ (u)), u).

The case that « is a limit ordinal is trivial. This concludes the proof.

E.4 Theorem 5.2.8

We must prove that, given a strategy (¢, <,) where all T nodes of all trees ¢(f)
and ¢(f) (for all symbols f) have a set with at most one rewrite rule, rewr(¢) and
rewry (t) have at most one element (for all terms ¢). We prove this using transfinite
induction on approximation a of rewr and rewry.

For a = 0 we trivially have that rewr and rewry return sets with at most one
element. For the case that « is a limit ordinal we trivially have that there is at
most one element by induction and the fact that eval®(T,t) C eval®(T,t) (and
similarly for evaly) when o < 8 and for all strategy trees T' and terms ¢.

What remains is the case that « = 8+ 1. We have the following cases of
eval®(T,t). Note that we only consider eval® here; the cases for eval] are very
similar.

e If "= X or T = E, then we have that there is at most one element per
definition.

o If "= F(r,) with position 7 and function ¢ of function symbols to strategy
trees, then, by induction, we trivially have there is at most one element.

o If T'= H(II,U) with set of positions IT and strategy tree U, then we are
done (by induction) if we can show that for all ¢, ¢’ € rewrf} (¢, 1) it holds
that t[¢]n = t[¢']ln. We observe that in terms like t[¢] only ¢(7) is used
if 7 € II Npos(t). That is, we need to show that ¢(r) = ¢'(m) for all
7 € IINpos(t). Per definition we have that both ¢(7) and ¢’ () are elements
of rewr (¢|). By induction we have that the latter has at most one element.
Therefore ¢(r) and ¢'(7) must be the same element.

e The case for T'= NF(IL, U), with set of positions II and strategy tree U, is
similar to the one above.

e Finally, if T = T(R,U), for some set of rewrite rules R and strategy tree U,
we have two cases. Either app® (R, t) is empty or it is not. In the first case we
done trivially by induction. Otherwise, we know that app®(R,t) contains at
most one element because of the definition of app and the assumption that
R contains at most one rule. With induction, this trivially means that also
in this case there is at most one element in the resulting set.

122 Chapter E. Strategy Tree Proofs

E.5 Theorem 5.3.1

We must show that if a strategy is thorough, rewriting a term ¢ with rewr or
rewry, results in a set of normal form, respectively head normal forms. Note that
we cannot use the same approach as with just-in-time strategies because repeated
passes through a tree may result in different paths (due to the possibility to let
the strategy depend on a head symbol of a subterm).

We prove this together with the invariance of P(T,t) = Jgrnu(t € S A
Pi(t,R) N Py(t,II) A thrgh(T,S,R,1II)) and P, (T,t) = 3spu(t € S A Pi(t,R) A
Py(t,II) A thrghy (T, S, R,1I)), where Pi(t,R) = =3rif cer,0(t =lo A true €
rewr(co)) and Py (t,II) = Vicrnpos(t)(tl= € hnf(t|)), with respect to eval and
evaly, respectively. Instead of showing that rewr(t) C nf(¢) and rewry(¢) C hnf(¢)
hold we will prove the more general statements eval(T,¢) C nf(¢) if P(T,t) and
eval(T,t) C hnf(¢) if B,(T,t). We use ordinal induction on the approximation «
of the definition of eval and evaly,.

For the case that o = 0 we have that eval(T,¢) = 0 and eval,(T,t) = 0. This
trivially satisfies our goal.

We consider the case that a = § + 1 with case analysis on the structure of 7.
First we consider the invariance of P(T,t) and the statement eval(T,t) C nf(¢) if
P(T,t). For each case below, take a S, R and I such that ¢t € S, Py (¢, R), P (t,1I)
and thrgh(7T, S, R,II). Note that the invariants trivially hold for occurrences of
rewr? and rewrg due to the completeness of the strategy.

o T = F(m,v), for some position 7 and function of symbols to strategy trees ;

this means that we have that forall f, thrgh((f),{u € S : 7 € pos;(t) A
hs(ulr) = f},RU{l = rif c€ Ry : —3,(m € pos¢(lo) A hs(lo|-) = f)}, 1)
and that thrgh(y(L),{u e S : © € pos;(u)},RU{l = rifce Ry : m¢€
pose (1)}, ITU {7}).
Assume that 7 € pos;(t). Then we have that thrgh(y(hs(¢|:)),{ue S : 7 €
posg(t) A hs(ulr) =hs(t|z)},RU{l = rif c € Ry : =3,(m € pos¢(lo) A
hs(lo|;) = hs(t|-)},). We have that P,(t, RU{l = rifc€e Ry : ~3,(n €
pos¢(lo) A hs(lo|) = hs(t|)}) is equivalent to Py (¢, R) A Pi(t,{l = rif ce€
Ry : —3,(m € posg(lo) A hs(lo|r) = hs(t|~)}) and know that P (¢, R) holds.
To show that the other conjunct also holds we must show that -3, (7 €
posg(lo) A hs(lo|z) = hs(t|z)) = V(7 € posg(lo) = hs(lo|,) # hs(t|x))
implies that —3,(t = lo A true € rewr(co)) for all rewrite rules | — r if ¢
in Ry. If there would be a ¢ with ¢ = lo A true € rewr(co), then we
trivially get that both 7 € pos¢(lo), lo|, = t|» and thus hs(lo|,) = hs(t|,).
This contradict with the antecedent of the implication and thus we have that
P(r,RU{l — rif ce Ry : —35(m € posg(lo) A hs(lo|z) = hs(t|)}).
As t is trivially in SN {u : hs(u|,) = hs(¢|r)} and we still have Py(¢,1I),
this means that P(¢(hs(¢)),t). By induction this trivially gives us that
eval® (¢ (hs(t)),t) C nf(t). But then also eval®(T,¢) C nf(t).

Now assume that m & pos;(t). This means we have that thrgh(¢ (L)), {u €

E.5. Theorem 5.3.1 123

S w g poss(u)}, R,IIU{r}). Itisclear thatt € {u € S : 7 ¢ pos;(u)} and
for Py(t, IIU{7}) we must show that if 7 € pos(t) then also ¢|, € hnf(¢|;). As
T & posy(t), we have that this means that we must show that if 7 € pos, ()
(i.e. t|; is a variable), then ¢|, is in head normal form, which holds trivially.
Together with Pj(¢, R), we trivially get that P(¢(L),t) holds. Then, by
induction, we get that eval®(y(L),#) C nf(¢). But then also eval®(T,t) C
nf(t).

e T = H(II',U), for some set of position II' and strategy tree U; this means
that we have that thrgh(U, {u[¢]ir : v €S A Veew (7 € pos(t) = ¥(w) €
rewry (tH-)} {p € R : Vues(O(u,p) \II' #0) Vv II' Nesspos(p) C IT}, (ITU
W)\ {r i 5 7€ W)}, Let 9/ € (4 © Vnerw (4" () € rewr(t]s)}.
We trivially have that t[{'lm € {ul]m : uw € S A View(¥(7) €
rewry (t|))} for all ¢ with Ve (¢ (7) € rewry(t]+)).

From Pi(t,R) it follows that =3, if ccr,0(t = lo A true € rewr(co)).
We must show that Py (t[¢)'|m,{p € B : Vues(@(u,p) \II' #0) v II'N
esspos(p) C II}), which is equivalent to =3, if cer,o (Vues(O(u, 1) \ 1" #
0) v ' Nnesspos(l — rif ¢) CI) A t[t']ir = lo A true € rewr(co))
and Vi_, if cer,o ([|ir = lo A true € rewr(co) = (Jues(O(u,)) \II' =
0) A TI'Nesspos(l — r if ¢) Z IT)). Let I — r if ¢ € R and o be a substitution
such that t[¢']r = lo and true € rewr(co). From P(¢, R) we get that there
is no substitution 7 such that ¢ = I7 and true € rewr(cr). Assume that
II" Nesspos(l — r if ¢) C II. Then, as t[¢'|ir = t[¢']g\n by Lemma E.1.3
for non-overlapping IT” (Lemma B.1.1) and (IT” \ IT) Nesspos(l — r if ¢) = 0,
from Theorem 2.1.2 it follows that there must be a 7 such that ¢t = I7. From
P (t, R) we then get that true ¢ rewr(ct). As we have that for all 7 € pos, ({)
with |, € var(c) that = € esspos(l — r if ¢) and thus 7 ¢ II', we have that
et = co and thus true € rewr(co). The latter is in contradiction with the
true ¢ rewr(co) we got before and therefore that II' N esspos(l — r if ¢) €
I1)). This leaves us to show that J,e5(d(u,) \II' = @). This follows trivially
from the fact that ¢ € S and, as t = lo, 9(t,]) = 0 by Lemma E.1.1. We
therefore we know that Py ([, {p € R : Vues(O(u,p) \II' # 0) v II'N
esspos(p) C IT}).

Finally we must show that P (t[¢'|ry, HUII')\{m-1-7" : = € II'}), which is
equivalent to Po(¢[¢'r, I\ (IT')) A Po(t[¢) |, I \{m-1-7" : w € II}). The
latter conjunct is trivially satisfied by induction. For the former conjunct we
must show that for all m € IT\II’ we have that ¢[¢']1|~ is a head normal form.
From P,(t,1I) it follows that ¢|. is a head normal form and per definition we
trivially have that if ¢|, —* u means that u is a head normal form as well. As
we have that ¢|,» —* ¢'(7’) for all 7’ € I by Theorem 5.2.1, Lemma E.1.2
and Lemma E.1.1 give us that t[{'|ir|x = t|z[Ax.¢) (7 - 2)] {7 . 7mrerry and
t‘ﬂ —* t|ﬂ—[)\$’¢/(ﬂ' . .17)}{71-/ s €11} -

Thus, as P(T, t[¢']ir), we get that eval®(T,t[¢/]/) C nf(¢[¢']r) by induc-

124 Chapter E. Strategy Tree Proofs

tion. As Theorem 5.2.1 gives us that ¢ —* t[¢)'];/, this concludes the proof
of this case.

e T = NF(IT',U), for some set of position II' and strategy tree U; this case is
the very similar to the case of T'=H(II',U).

e T'=T(R',U), for some set of rewrite rules R’ and strategy tree U; this means
we have that thrgh(U, S\ {lo : | - rif c€ R’ A true € rewr(co)}, RU
R/,II). In the case that there are rewrite rules in R that can be applied to
t, we trivially have that the invariant is satisfied. Otherwise, we have that
there are no I — r if ¢ € R’ and o such that ¢ = lo and true € rewr(co).
This trivially means that ¢t € S\ {lo : | > rif c € R’ A true € rewr(co)}
and Pi(t,RUR’). As we already had that Py(¢,II), the invariant is also
satisfied in this case.

e T = E; in this case the invariant is trivially satisfied due to the absence of
eval/evaly, on the right-hand side of the definition. This means we must show
that if P(E,t), then t € nf(¢). From P(E,t) it follows that thrgh(E, S, R,II) =
Vues(pos(u) CIIU{e}) A (S#0 = Ry C R). The first conjunct together
with Py(t,1I) gives us that for all positions © € pos(t) \ {¢} we have that
t|x € hnf(t). With Theorem 2.1.1 this means that for all i € pos(t) we have
that ¢|; € nf(¢). This, together with P;(¢t,R), Ry C R (as t € S and thus
S # 0) and hs(t) = f, gives us that ¢ € nf(¢).

e T = X; in this case the invariant is trivially satisfied due to the absence of
eval/evaly, on the right-hand side of the definition. Also, as eval®(X,t) = (),
we trivially have that eval® (T, t) C nf(¢)t.

The cases for the invariance of P, (T,t) and the statement evaly (7, t) C hnf(t) if
Py (T,t) are very similar. The only significant difference is in the case that T' = E.
In that case the invariant is still trivially satisfied. For eval,(7,t) C hnf(¢) if
Py (T, t) we have that if P, (T, t), then also Vicg,(t =% v = —Jj_rir Ce]ghs(uwj(zt =
lo A true € rewr(co))) as all essential positions of relevant rewrite rules are in
head normal form and are therefore the same in u as in ¢. This trivially means
that ¢ is a head normal form.
The case that « is a limit ordinal is trivial.

E.6 Theorem 5.3.2

We must show that if a strategy is thorough and we have that rewr or rewry, return
a empty set for a term ¢, then ¢ must have a infinite reduction (i.e. t —¢).

Let ¢ be defined by ¢(¢,5) = (S = 0) = ¢ —“. Then we are interested in
(T, t) = @(t,eval(T,t)) and ¥, (T,t) = p(t,evaly(T,t)). We derive (in)equalities
from these statements such that we can easily construct an equation system of
which these (in)equalities show that ¥ and vy, are a solution. In these derivations

E.6. Theorem 5.3.2 125

we assume that P(T,t) (Section E.5) holds as we are only interested in such cases.
We then show that the minimal solution of this equation system is true, which
means that (T, t) and (T, t) hold.

Note that = corresponds to the order on booleans. That is, p = ¢ if, and only
if, p < g. Also note that ¢ is monotone in S.

With case analysis on T

e Assume that T = F(m,v’) for some position 7 € pos;(t) and function ¢’ of
positions to terms.

Y(F(m,¢'),t)
o(t,eval(F(m,¢'), 1))
p(t, eval(y' (hs(t[r)), 1))

(¢ (bs(t]x)), t)

If © & pos;(t) we get the following.
$(F(m,4'), 1)
o(t, eval(F(m, '),)
p(t, eval(y'(L),t))

P (L)1)

e Assume that T'= H(II, U) for some set of positions IT and strategy tree U.
¢(HILU), 1)
o(t,eval(H(IL,U),t))
pl(t, Uw"e{w' : Vaen(mepos(t) = ¢’ (w)Erewrn (t[+))} eval(U, t[¢"]n))

(Uyreqy s Vaen(mepos(t) = v (m)erewrn (tlx))} VAU []m)) = 0 =

t —%

126 Chapter E. Strategy Tree Proofs

v’l/)"E{l[)’ : Veen(mepos(t) = w’(ﬂ')Erewrh(ﬂw))}(eval(Ua tW"]H) = @) =

t—%

ey’ : Vaen(nepos(t) = v (x)erewrn (t),))} (€val(U, t[Y"n) =0 =
t =)V

({Y" : Vaen(m € pos(t) = ¢/'(7) €rewry(t|))} =0 A t —=%)

Fprefy s Vaen(nepos(t) = v (m)erewn (tl.))} (eval(U, t["]m) = 0 =
t—-Y)V
(Vo (-Vren(m € pos(t) = ¢'(7) € rewry(t]x))) At —¥)

ey’ : Vaen(nepos(t) = v (x)erewrn (t),))} (€val(U, t[Y"n) =0 =
t—-¥)V
(Vs (Fren(m € pos(t) A /() & rewry(t|z)) At —%)
= {}
Fyrey’ : Yren(nepos(t) = v/ (m)erewry (1))} (€Val(U, t []n) = 0 =
t—-Y)V
(Fren(m € pos(t) A rewry(tlr) =0) A t —%)

Fyrefu : Vaen(repos(t) = v (m)erewn (t),))} (€val(U, t " |n) = 0 =
t =)V

Jren(m € pos(t) A rewry(t|.) =0 A t —%)

Fpreqy s Vaen(nepos(t) = v (m)erewn (tl.))} (eval(U, t["]n) = 0 =
(t =" t["ln A t"ln —*)) vV

Jren(m € pos(t) A evaly(hs(t];),t|z) =0 A t|r —%)

= {}

Fyrefu : Vaen(repos(t) = v (m)erewn (t],))} (€val(U, " |n) = 0 =
"l =) v

Jren(m € pos(t) A evaly(hs(t];),t|z) =0 A t|, —%)

Hw”e{w’ :Veen(mEpos(t) = w’('fr)Erewrh(th-))}(w(Ua t[’(/)”]l_[)) \
EIWEH(T(€ pOS(t) A wh(g(hs(ﬂTr))vt‘Tr))

Note that there is no IT such that the last expression is equivalent to false
because this would mean that there are no positions in II N pos(t) (second

E.6. Theorem 5.3.2 127

disjunct) and in that case the set of ¢’s is the set of all functions.

e Assume that T = NF(II,U) for some set of positions II and strategy tree
U. With a similar derivation as for the case of Y(H(IL,U),t) we get that

Y(NF(IL U),t) is implied by Jyreqp : v, cn(w (r)erewr(t],) (@ (U, t[" ")) Vv
Fren((s(bs(tlx)), tlx))-

e Assume that T'= T(R, U) for some set of rewrite rules R and strategy tree
U. Also assume that there is a rule in R that can be applied to ¢.

(T(R,U),1)

o(t,eval(T(R,U),t))

et Uir i cer A t=t0 A truec€rewr(co) rewr(ro))

Uier if cer A t=to true€rewr(co) rewr(ro) =0 = t —¢

Vir if c€R A t=lo A trucErcwr(co‘)(rewr(rU) =0) = t =¥

ir if cER A t=lo A trucerewr(co) (TeWT(ro) =0 = t —¢)

Jir if c€R A t=lo A trucerewr(co) (TeWI(ro) =0 = (t —ro A ro —%))
Jirif c€R A t=lo A true@rewr(ca)(rewr(ra) =0 = ro —¥)

Jir if c€R A t=lo A trucerewr(co) (€Val(s(hs(ra)),ra) =0 = ro —%)

Ell—m if ceR A t=lo A trueErewr(ca)(w(g(hs(ro—))a TJ))

Note that there is no R such that the last expression is equivalent to false
because of the side condition for this case. Now assume there is no such rule.

Y(T(R,U),t)
o(t,eval(T(R,U),t))

o(t,eval(U,t))

128 Chapter E. Strategy Tree Proofs

P(U,1)

e Assume that T'= E.

Y(E 1)

(t,eval(E, t))

o(t,{t})
{t} =0 =tV
true

e Assume that T = X.

P(X 1)

o(t,eval(E, t))

= A{PT0)}
true

In a similar way we can derive the (also similar) inequalities for .

Now take a boolean equation system £ with inequalities that correspond directly
with the inequalities we derived but with all occurrences of ¥ (T,t) replaced by
X(T,t) and all occurrences of ¥y (T,t) by X,(T,t). Clearly ¢ and vy, are valid
solutions for X and Xy, respectively.

As the inequalities of £ are built of only true and non-empty disjunctions,
we trivially have that the minimal solution for both X and X’ is the function
AT, t.true. We trivially have that the minimal solution of £ smaller than any other
solution and as AT, t.true is the biggest possible function, we know that ¢ and 1y,
are also equal to AT, t.true. This concludes this proof.

E.7. Theorem 5.3.4 129

E. 7 Theorem 5.3.4

We must show that if a sequential strategy is full and in-time (see Section B.1 for a
more formal definition), that its translation with ¢ (per Theorem 5.2.2) results in
a thorough strategy. We do this by showing that for all s’ and s” with s = &' ++5"
we have that thrgh(o(s”), {f(t1,. .., tar(s)) = true}, ¢ (s’),¢i(s")) with induction
on the size of s”.

o If s =[], then we have that s’ = s and thus that ¢,(s') = Ry and ¢i(s') =
{1,...,ar(f)}. This means we get the following.

thrgh(o([]), {f(t1, ... tarcy)) : true}, Rp, {1,...,ar(f)})

Vte{f(tl,...,tarm}(POS(t) - m U{eh) A
({f(th ce- 7tar(f))} 7& 0 = Rf - Rf)

true

o If s = 11> s", then we have the following.

thrgh(o(1 > ™), {f(t1,. .. tar(s)) : true}, ¥u(s'),i(s"))

thrgh(NF (1, o(s")), {f(t1, ... tarcy)) : true},u(s’),¢i(s"))

thrgh(o(s"), {t[x]r : t € {f(t1,. ., tar(p)) : true} A
Vier(i € pos(t) = x(i) € rewr(t];))},4 -
{p€thu(s’) : Viey, (Ot p) \ i(s") #0) V I Nesspos(p) C ¢i(s)},

(') UT)

For the last two arguments we can derive the following.

{p € ¥e(s') + Viey. (3(t,p) \ i(s') #0) Vv T Nesspos(p) C i(s')}
{Ve(melINIl' & 7elINIl') }
{p € () & Viey, (0t p) \ ¥i(s") #0) V INesspos(p) € ¢i(s')}
{ Voew(s) sy r,sy (8" = s+ (R B> s3) A
peR A ({1,....ar(f)} NU,cpesspos(p”)) € i(s1))) }

{p € () : Viey, (0(t, p) \ tu(s') #0) V true}

130 Chapter E. Strategy Tree Proofs

{p € Y:(s') : true}
(NED)
Pr(s" 4+ [1])

And:

$i(s’++[1])

Now, as {t[x]r : t € {f(t1,... tar(s)) : true} A Vicr(i € pos(t) = x(i) €
rewr(t|;))} is obviously included in {f(t1,...,tar(y)) : true}, we get (with
Lemma E.8.4) that our goal follows from thrgh(yp(s"”), {f(t1,. .., tax(s))

true}, ¥ (8" ++[1]), ¥i(s' ++[I])), which hold by induction.

e If s/ = R > 5", then we have the following.

thrgh(p(R > "), {f(t1,. .., tary)) : truel, ¥u(s"), ¥i(s"))

thrgh(T(R, (")), {f(t1, ... tar(p)) : truel,p(s’), ¥i(s"))

thrgh(p(s™),
{f(t1, s tae(py) = truep\{lo : I = rifc€ R A true € rewr(co)},

Ur(s) U R, i(s"))

thrgh(e(s™),
{f(tr, . tar(py) + truef\{lo : | = rif c€ R A true € rewr(co)},

(" [R]), i (s ++ [R]))
= { LemmaE.84}
thrgh(@(s/”% {f(th s atar(f)) : true}, wr(sl + [R])7 wi(S/H [RD)

true

E.8. Theorem 5.4.1 131

E.8 Theorem 5.4.1

We must show that, if f is a function symbol such that |J,_,, ;¢ ceR; pos(l) is finite,

we have that stgen(Ry) is thorough w.r.t. f and, similarly, that stgen, (Ry) is head
thorough w.r.t. f.

Lemma E.8.1
stready(R,II) C R

Proof We trivially have that this is the case per definition of stready. O

Lemma E.8.2
need;’ (R, II) CII

Proof For the defintion of needy it trivially follows that needy’(R,II) C {=«

(m,n) € w(R,II,needs)}. The latter set is a subset of II per the requirement on
w. O

Lemma E.8.3
need; (R,II) CII

Proof For the defintion of need, it trivially follows that needy (R,II) C {=
(m,n) € w(R,II,need,)}. The latter set is a subset of II per the requirement on
w. O
Lemma E.8.4

thrgh(T,S U S’, R, II) = thrgh(T, S, R, II)
Proof With induction on the structure of T'. First the base cases:

e T = E; this means we have
thrgh(E, S U S’, R, II)
Viesus/(pos(t) CTTU{e}) A (SUS"#0 = Ry C R)

Vies(pos(t) C LU {e}) A Vies (pos(t) C ITU {e}) A
(SUS'#£0 = R; CR)

Vies(pos(t) CTTU{e}) A (SUS #0 = Ry C R)

132 Chapter E. Strategy Tree Proofs

Vies(pos(t) CITU{e}) A (S#DVS"#0 = Ry CR)

Vies(pos(t) € TTU {e}) A
(S#0 = Rf CR) A (S'#0 = R; CR)

Vies(pos(t) CTIU{e}) A (S#£0 = R; C R)

thrgh(E, S, R, II)
e T = X; this means we have

thrgh(X, SU S’ R, II)
Viesus: (t =)

Vies(t =%) A Vies(t —%)
Vies(t —¢)

thrgh(X, S, R, II)

Next the other cases:

e T = F(m,) for some position 7 and function 1 of positions to strategy trees;
this means we have

thrgh(F(m,v),SU S, R, II)

Vi (thrgh((f),{t € SUS" : m € pos(t) A hs(t|r) = f'},
RU{l—rif ce Ry : =3,(w € pos;(lo) A hs(lo|;) = f)}, 1)) A
thrgh(y(L),{t € SUS" : 7 & pos;(t)},
RU{l »rifce Ry : mwepos()},ITU{x})

Ve (thrgh(¢(f'),{t € S : m € pose(t) A hs(t|r) = f'} U
{te S : mepos(t) A hs(t|.) = f'},
RU{l —rif ce Ry : =3,(m € pos¢(lo) A hs(lo|z) = f")}, 1)) A
thrgh(¢(L),{t €S : m&pose(t)} U {t €S : m & poss(t)},
RU{l—rif ce Ry : mepos())},ITU{x})
= { Induction Hypothesis }

E.8. Theorem 5.4.1 133

Vy (thrgh(¢(f"),{t € S = m € pos;(t) A hs(t|r) = f'},
RU{l—rifce Ry : =3,(m € pos¢(lo) A hs(lo|x) = f")}, 1)) A
thrgh(¢(L),{t € S : m & pos;(t)},
RU{l—rifce Ry : mepos())},ITU{r})

o T = H(II',U) for some set of positions IT" and strategy tree U; this means
we have

thrgh(H(I', U), S U S, R, II)

thrgh(U, {tWJ}H/ cteSUS' A
Vrem (m € pos(t) = (m) € rewrn(t[r))},
{p€ R : II'Nesspos(p) CII}, MUI)\ {7 -i-7" : mweIl'})

thrgh(U, {t[Y]m : t €S A
Veem (m € pos(t) = (m) € rewry(t|+))} U
{t{Ylw : t €S A Veew (m € pos(t) = ¢(mw) € rewry(¢]x))},
{p€ R : II'Nesspos(p) CI}, MUII)\ {7 -i-7" : we€Il'})
= { Induction Hypothesis }
thrgh(U, {t[¥]lr : t €S A Veerw (7 € pos(t) = ¥(w) € rewry(t|))},
{p€ R : II'Nesspos(p) CII}, MUII)\ {7 -i-7" : mweIl'})

thrgh(H(II',U), S, R, II)

e T = NF(IT', U) for some set of positions IT" and strategy tree U; this case is
similar to the previous case.

e T =T(R',U) for some set of rewrite rules R’ and strategy tree U; this means
we have

thrgh(T(R',U), S U S, R, II)

thrgh(U, (SUS)\{lo : | > rif ce R' A true € rewr(co)},
RUR',TI)

134 Chapter E. Strategy Tree Proofs

thrgh(U, (S\ {lo : l = rif ce R' A true € rewr(co)}) U
(S'\{lo : Il ->rifce R A true € rewr(co)}),RU R',1II)
= { Induction Hypothesis }
thrgh(U, S\ {lo : | - rif c€ R' A true € rewr(co)}, RU R/, II)

thrgh(T(R',U), S, R, II)

O

Definition stlim.

stlim (F (7,), II) = Vg, (stlim(¢(f1), 1))

stim(H(IT', U),II) = 1II' CII A stlim(U,1I)

stim(NF(IT', U),1I) = TII' CII A stlim(U,1II)

stlim(T(R, U), 1) = stlim(U, II)

stlim(E, IT) = true

stlim (X, IT) = true
Lemma E.8.5

stlim(7, IT) = stlim(7, ITTU I1")

Proof This follows trivially with induction on the structure of T a

Lemma E.8.6 Let I be non-overlapping and R C Ry for some f. We have the
following: B
stlim(stgen’ (R, IT), IT)

Proof We prove this with induction on the size of IINJ,_, i cer, Pos(l). With
case distinction on R = . If R = (), then we have

stlim(stgen’ (0, 1), IT)
stlim(NF(II, E), IT)
IICTII A stlim(E, II)
true A true

true

Otherwise, if R # (), we have the following cases:

E.8. Theorem 5.4.1 135

e R’ # () where R’ = stready(R, II); which means that

stlim(stgen’ (R, IT), IT)
stlim(T(R',stgen’ (R \ R, 1I)),1I)

stlim(stgen’ (R \ R/, II),I)
= { Induction Hypothesis }

true

e stready(R,I1) = 0 A needf(R,II) # @ A 7 = v.needf (R,II); which means
that

stlim(stgen’ (R, IT), II)

stlim(H({r}, F(r, stfunc(r, R, I1))), II)

{m} CII A stlim(F(r,stfunc(m, R, 1)), II)
{r} CT A ¥, (stlim(stfunc(m, R, II)(f1), T0))

{r} CI A Vy(stlim(stfunc(m, R, II)(f), 1)) A

stlim(stfunc(w, R, II)(L), IT)

{m} CTI A
V¢ (stlim(stgen’ (stfilters(m, f, R), (IT\ {m}) U {7 -3 : 1 <i<ar(f)}),
) A
stlim(stgen’ (stfilter, (7, R), 1L\ {r}),I)
< {LemmaE._85}
{r} CTI A
V¢ (stlim(stgen’ (stfilters(m, f, R), (IT\ {m}) U {7 -3 : 1 <i<ar(f)}),
M\ ({r}ufr-i-x" :i>ar(f)})) A
stlim(stgen’ (stfilter, (7, R), IL\ {7}),IL\ {7 -7’ : true})
= { m eIl as need, (R,II) CII }

136

Chapter E. Strategy Tree Proofs

true A
V¢ (stlim(stgen’ (stfilters(mr, f, R), (IT\ {m}) U {m -3 : 1 <i<ar(f)}),
M\ ({r}ufr-i-x" :i>ar(f)}) A
stlim(stgen’ (stfiltery (m, R), I\ {7 }),II\ {7})
{ m €1l as need; (R, II) C II, II is non-overlapping }
V¢ (stlim(stgen’ (stfilters (7, f, R), I\ {m}) U{m-i : 1 <i<ar(f)}),
(I\{7rHU{r-i-7" : 1<i<ar(f)}) A
stlim(stgen’ (stfilter, (7, R), 1T\ {x}), I\ {7})
{ Induction Hypothesis }
true A Vy(true) A true

true

e stready(R,II) = 0 A needy’(R,II) =0 A 7 = v.needy (R, II); which means

stlim(stgen’ (R, IT), II)
stim(NF({7},stgen’ (R, 1T\ {r})), 1)

{m} CII A stlim(stgen’(R,II\ {r}),II)
{ Lemma E.8.5 }
{7} CT A stlim(stgen’ (R, 1T\ {n}), I\ {7})
{ m €1l as need; (R, II) C II, Induction Hypothesis }

true A true

true

Lemma E.8.7

thrgh(T, S, R, TTUII") Astlim (T, (II") 1) AV,es(pos(t) NI = () = thrgh(T, S, R, 1I)

Proof With induction on the structure of T'. First the base cases:

e T = E; this means we have

thrgh(E, S, R, 1I)

E.8. Theorem 5.4.1 137

Vies(pos(t) CTTU{e}) A (S#0 = Ry CR)

= { Assumption Vies(pos(t) NII' = 0) }
Vies(pos(t) \II' CITU{e}) A (S#0 = Ry CR)
Vies(pos(t) CTIUII' U{e}) A (S#0 = Ry CR)
thrgh(E, S, R, TTU IT')

= { Assumption }

true

e T = X; this means we have

thrgh(X, S, R,II)
Vies(t —¢)

thrgh(X, S, R, ITUII)
{ Assumption }

true

Next the other cases:

e T = F(m,) for some position 7 and function 1 of positions to strategy trees.
As Vies (pos(t) NIT' = @ trivially follows from the assumption Vieg(pos(t) N
I'=0)if S’ ={teS : p(t)} for some o and stlim(y(f,), (I1')~1) follows
trivially from stlim(7, (II")~! for all f,, this means we have the following.

thrgh(F(m,), S, R,1I)

Yy (thrgh(p(f'),{t € S : m € pose(t) A hs(tlx) = f'},
RU{l—rif ce Ry : =3,(m € pos¢(lo) A hs(lo|z) = f")}, 1)) A
thrgh(y(L),{t € S : m & pos;(t)},
RU{l—rifce Ry : mepos())},ITU{r})
< { Induction Hypothesis }

138 Chapter E. Strategy Tree Proofs

Ve (thrgh(¢(f'),{t € S : m € pose(t) A hs(t|=) = f'},
RU{l—rif ce Ry : =3,(m € pos¢(lo) A hs(lo|r) = f")},
IMUIr)) A

thrgh(¢ (L), {t € S : ™ & pos;(t)},

RU{l—rifce Ry : mepos()},TUIl' U{r})

thrgh(F(m,), S, R, TTUII')
{ Assumption }

true

o T = H(IT",U) for some set of positions II” and strategy tree U. As we have
stim(H(IT”, U), (IT") 1), we also have that I1” C (IT") ! and stlim(U, (IT")~1).
From the former it follows that II” NII’ = () and for the later it follows that
stim(U, (IT" \ II"")~1) for any set II"’ (by Lemma E.8.5). Also, in order to
be able to apply the induction hypothesis later on, we need that we have

Vire ([l < t€S A Ve (wEpos(t) = () erewrny (t],))} (POs(E) N (A \ {7 - - 7/

m € II"}) =). It is easy to see that this follows from the obvious fact
that pos(#) N ({r-i-7" : m € I"})~! C pos(t) and the assumption that
Vies(pos(t) NII' = (). We then have the following.

thrgh(H(I1”,U), S, R, 1I)

thrgh(U, {t[Y]nr : t €S A Vaen(w € pos(t) = ¢(w) € rewry(t|))},
{p€ R : T" Nesspos(p) CI}, (MU \{m-i-7n" : meIl"})
< { Induction Hypothesis }
thrgh(U, {t[Y]n : t €S A Vaenr(m € pos(t) = (w) € rewry(¢|))},
{p€ R : TI" Nesspos(p) C 11},
(MU \{m-i-7 : mell”})) U W'\{r-i -7 : 7ell"}))

thrgh(U, {t[Y]n : t €S A Vaenr (7w € pos(t) = (w) € rewry(t|))},
{p € R : II" Nesspos(p) C 11},
MMurumm\{r-i-n" : mel"})
{"ni’ =0 }

thrgh(U, {t[Y]nr : t €S A Veenr(m € pos(t) = () € rewry(t]x))},
{pe R : I"Nesspos(p) CTTUII'},
(Muull”)\{r-i-7 : 7ell"})

E.8. Theorem 5.4.1 139

thrgh(H(", U), S, R, U IT')
= { Assumption }

true

e T = NF(IT', U) for some set of positions IT" and strategy tree U; this case is
similar to the previous case.

o T' = T(R,U) for some set of rewrite rules R’ and strategy tree U. As
Vicss (pos(t)NII" = () trivially follows from the assumption Ve g (pos(t) NI =
0) if S’ C S and stlim(U, (IT") 1) trivially follows from stlim (7", (IT')~1), this
means we have the following.

thrgh(T(R',U), S, R, II)

thrgh(U, S\ {lo : | = rif c€ R' A true € rewr(co)}, RUR',II)
< { Induction Hypothesis }
thrgh(U, S\ {lo : | = rif c€ R' A true € rewr(co)}, RUR/,ITUII')

thrgh(T(R',U), S, R,ITUII')
= { Assumption }

true

O

We show that under the assumption that R C Ry, € ¢ 11, II is non-overlapping and
VteG(R),l—w if Cem(R)(a(t, DAP(IL) £ 0 v (0(t,1) =0 A esspos(l — rif c) CIT A
-3, (t = lo A true € rewr(co)))), it holds that thrgh(stgen’ (R, II), §(R), R(R), P(II)),
where

6(R) = {t: ~Firircer\r(t =10 A true € rewr(co))}
R(R) = Ry \R
PA) = @A)\ {e}

We do this with induction on the size of IINJ, ., ;¢ cer, Pos(l). With this we triv-
ially have that thrgh(stgen(Ry), {f(t1,...,ts) : true},(,0) holds. Note that we
do not explicitly show that the assumptions (except the last) hold when applying
the induction hypothesis.

First the case that R = (). Here we have the following.

thrgh(stgen’ (0, I1), &(0), R(0), PV(I1))

140 Chapter E. Strategy Tree Proofs

thrgh(NF(I1, E), §(0), R(0), B(I1))

thrgh(E, {t'[¢]n : ¢ € &(0) A Vren(rw € pos(t’) = ¢(m) € rewr('|))},
{p €R(D) : Vies() (0t p) \IL #0) v IINesspos(p) € P(I)},
P UTI)

Vie{t[oln : €& () A Vren(mepos(t’) = w(m)erewr(#/|)}
pos(t) CP(I) UTTU {e}) A

Ry C{p € RO) : Vies((Ot p) \ T #0) v I Nesspos(p) € P(IT)}

Vie{t/leln : #/€6(8) A Vaen(repos(t') = b(x)erewr(t']2))} (
pos(t) € () 7'\ {e}) UTTU {e}) A
Ry C{p € R(D) : Vies@(9(t,p) \I1 #0) v T Nesspos(p) C P(II)}

Vet [gln : /€S () A Yren(wepos(t’) = w(m)erewr(t'|))} (
pos(t) C (I~ tUTlU {e}) A
Ry C{p e R(0) : Yics@)((t,p) \IL#0) Vv IINesspos(p) C P(I)}

Vie(gln : /€6 (0) A Vren(mepos(t’) = w(m)erewr(t’|))}
pos(t) C {m : true}) A

Ri C{peR(O) : Yeesm((t,p) \TI #0) Vv I Nesspos(p) € P(IT)}

true A Ry € {p€ Ry\ D : Vieo (@t p) \ BAI) £ 0) v
IT Nesspos(p) C P(II)}

Voer, (Vees)(0(t, p) \ I # 0) Vv TN esspos(p) C P(II))

Voer, (Vies()(0(t, p) \ L # 0) v IINesspos(p) = 0)
= { 9(t,1) NP(II) # O implies A(¢,1) \ (ITU {e}) # B, Assumption }

true

Next the case R # (). With case distinction on the values of stready (R, II) and
need;’ (R, II) we get the following cases for thrgh(stgen’ (R, II), &(R), R(R), PB(II)).

e R’ # () where R’ = stready(R, II); then we have

thrgh(stgen’ (R, I1), G(R), R(R), B(I1))

E.8. Theorem 5.4.1 141

thrgh(T(R/,stgen’ (R \ R',1I)), 5(R), R(R), B(I1))

thrgh(stgen’ (R \ R/, II),
S(R)\{lo : l = rif ce R A true € rewr(co)},
R(R) U R, P(ID))

If we can show that vtGG(R)\{lo' :l—rif ceER' A trueGrewr(ca')},pGRf\(R\R’)(a(ta l)ﬁ
PN £ 0 v (O(t,1) =0 A esspos(l — rifc) CIT A I (t =1lo A true €
rewr(co)))), S(R)\{lo : | = rif c€ R' A true € rewr(co)} = S(R\ R')
and R(R)UR' = R(R\ R'), then by induction we have that this is true. The
former, using the assumption and stready(R,II) C R (Lemma E.8.1), fol-

lows from vtG{t’ $o3 L ir cen (P'=lo A trueGrewr(co’))},pER’(6(t7 l) N m(H> 7é (Z) v
(0(t,1) =0 A esspos(l —» rif ¢) CII A —3,(t =1lo A true € rewr(co)))),
which trivially holds per the definition of stready. For the second statement
we have the following.

S(R)\{lo : l - rif ce R’ A true € rewr(co)}

{t © =31 ircer\rR(t =lo A true € rewr(co))}\
{t :t=loc Nl —rif ce R A true € rewr(co)}

{t © =Jirir cerp\r(t =lo A true € rewr(co)) A

“Jirif cer’(t =10 A true € rewr(co))}

{t : ﬁﬂlﬂr if c€(R;\R)UR’ (t =lo A true € rewr(co))}
{ R’ C R by Lemma E.8.1 and assumption R C Ry }

{t : _'Ell—w‘ if CERf\(R\R/)(t:la N true € rewr(ca))}

S(R\ R)

The following derivation concludes this case.
R(R)UR
(RF\R)UR

(By UR)\ (R\ R)
{ R’ € R by Lemma E.8.1 and assumption R C Ry }

142 Chapter E. Strategy Tree Proofs

Re\ (R\ R')

R(R\ R

o stready(R,II) =0 A needy’(R,II) # 0 A 7 = r.needy’ (R, II); this means

thrgh(stgen’ (R, II), S(R), R(R), B(II))
thrgh(H({n}, F(, stfunc(rw, R,II))), (R), R(R), P(II))

thrgh(F(m, stfunc(rw, R, II)),
{tliry = t € B(R) N Veny(n' € pos(t) = (n') € rewr(t|r))},
{p e R(R) : {m} Nesspos(p) € P(I)},
BADUA{rH\ {7’ -i- 7"« 7" € {m}})

thrgh(F(m, stfunc(r, R, II)),
{tfp(m)]x : t € &(R) A (w € pos(t) = ¥(mw) € rewr(t|:))},
{pER(R) : = & esspos(p) \ B},
P U{rH) \ {7 i -7 : true})

thrgh(F(m, stfunc(r, R, II)),
{tlul : t€ S(R) A (7 € pos(t) = u € rewr(t|:))},
{0 ER(R) : m ¢ esspos(p) \ B},
(BADHU{rH) \{m-i-7" : true})

E.8. Theorem 5.4.1 143

V¢ (thrgh(stfunc(m, R, II)(f/),
{ve{tul, : t€ &(R) N (7 €pos(t) = u € rewr(t|r))}
: e pose(v) A hs(vlz) = f'},
{pER(R) : 7 & esspos(p) \ B(T)}U
{l = rifce Ry : —3,(m € posg(lo) A hs(lo|) = ')},
(BT U)\ {7+ true})) A
thrgh(stfunc(w, R, II)(L),
{ve{tlulr : te &R) AN (7 €pos(t) = u € rewr(t|r))}
¢ pos;(0)},
{pER(R) : 7 & esspos(p) \ B(IT)}U
{l—=rifce Ry : mepos(l)},

(B UA{r) \ {7 -i-7" : truep) U {n})

We separately continue with each of the above conjuncts. With the first we
get the following.

V¢ (thrgh(stfunc(r, R, IT) (),
{ve{tlulr : te &(R) N (7 €pos(t) = u € rewr(t|r))}
7 € posy(v) A hs(ols) = /),
(P ER(R) : 7 ¢ esspos(p) \ P(IIU
{l=rif ce Ry : =3,(m € pos¢(lo) A hs(lo|) = f")},
(B(T) U {ah) \ {r i+ true})

V¢ (thrgh(stfunc(w, R, IT)(f'),
{tlulr : t € &(R) A (w € pos(t) = u € rewr(t|r)) A
™ € posy(t[ul) A hs(u) = f'},
{pER(R) : 7 & esspos(p) \ B(I)}U
{l = rifce Ry : —3,(m € posg(lo) A hs(lo|) = ')},
(BT U {ah) \ {r i+ true})

V¢ (thrgh(stgen’ (stfilter¢(m, f/, R), I\ {7}) U{m -7 : 1 <i<ar(f)}),
{tlulz : t€ &(R) A (m € pos(t) = u € rewr(t|z)) A
7 € posy(tluls) A bs(u) = '},
{p € R(R) : 7 & esspos(p) \ P(II) }U
{l =rifce Ry : =3,(m € pos¢(lo) A hs(lo|x) = ')},
PBADU{xH) \{m-i-7" : true}))

144 Chapter E. Strategy Tree Proofs

Next we derive relations between the arguments of the thrgh above and
S(sthiltere(m, f/, R)), R(sthiltere(m, f/, R)) and P\ {r})U{r-i : 1 <i<
ar(f')})-

{tlu]» : t € S(R) A
(m € pos(t) = u €rewr(t|r)) A 7€ pos(tful,) A hs(u) = f'}

{tlul= = t€{t' © =F_ritcer,\r(t' =lo A true € rewr(co))} A
(m € pos(t) = u €rewr(t|r)) A 7 € pose(tfulr) A hs(u) = f'}

{tlulx © =Firir cerp\rR(t = lo A true € rewr(co)) A
(m € pos(t) = u € rewr(t|r)) A 7€ poss(tu]lr) A hs(u) = f'}

-
{tlulx + =Firir cerp\r(t =lo A true € rewr(co)) A
7 € pose(t[ulz) A hs(u) = f'}
= {7 €Il (Lemma E.8.2),
assumption ¥ ¢ g\ g(esspos(p) N 11 = 0) }
{t ©+ =3 ircer\r(t =lo A true € rewr(co)) A
7 € pos(t) A bs(tl) = /'}
-

{t ©+ =3rircer\r(t = lo A true € rewr(co)) A
((m € pose(t) Ahs(t]-) = f') V
ﬂal4>7" if ce{l—r if ceRy : =3, (wEpos;(lo) A hs(la’\.,r):f’)}(
t=1Ilo A true € rewr(co)))}

{t ©+ =3 ircer\r(t =lo A true € rewr(co)) A

_'Ell—n“ if ce{l—r if c€Ry : =3, (wE€poss(lo) A hs(la|,,)=f/)}(
—(m € poss(t) Ahs(t|r) = f) A t=1lo A true € rewr(co))}

{t © =Jiorircerp\r(t =lo A true € rewr(ca)) A

e ce{l—rif c€Ry : =3, (wEpos;(lo) A hs(lo’|,\.):f’)}(
t=1Io A true € rewr(co))}

E.8. Theorem 5.4.1 145

{t © =31 ircer\rR(t = lo A true € rewr(co)) A

T3 r if c€RpN{l—r if ¢ : =3, (reposg(1o) A hs(lo|x)=F)} (
t=1lo A true € rewr(co))}

{t s Y c€(Rf\R)U(RyN{l—7 if ¢ : =3, (r€pos;(lo) A hS(lO"ﬂ'):f,)})(
t=1lo A true € rewr(co))}

{t : “Hlﬁr if ce Rp\(R\{l—r if c: -3, (mw€pos;(lo) A hs(la‘\ﬂ.):f’)})<
t=1lo A true € rewr(co))}

{t R [c€Rf\{l—r if c€ER : 3, (mEpos;(lo) A hs(lo’\.,r):f’)}(
t=1Io A true € rewr(co))}

S{l—-rifce R : 3,(w € poss(lo) A hs(lo|=) = f)})

S(stfilter¢(m, f, R))

Next for fR.

{0 ER(R) : 7 ¢ esspos(p) \ P(T)IU
{l = rif ce Ry : =3,(m € pos¢(lo) A hs(lo|) = f')}

{p € Rf\ R : 7 ¢&esspos(p) \ P(II)}U
{l—=rifce Ry : ~3,(m € pos¢(lo) A hs(lo|) = f')}

({p€ Ry : m&esspos(p) \ PA)} \ {p € R : true})U
{l—=rifce Ry : ~3,(m € pos¢(lo) A hs(lo|x) = f')}

({p € Ry : m & esspos(p) \ P(I) }U
{l = rifce Ry : ~3,(m € posg(lo) A hs(lo|x) = f)})\
({p € R : true}\
{l—=rifce Ry : ~3,(m € posg(lo) A hs(lo|=) = f)})
{ Assumption R C Ry }

146 Chapter E. Strategy Tree Proofs

{l=rifce Ry : m ¢esspos(l — rif ¢) \ P(II) Vv
=3, (m € pos¢(lo) A hs(lo|z) = f)}\
{l—=rifce R : 3,(m € pos¢(lo) A hs(lo|z) = f)}

{l =rifce Ry : m¢esspos(l — rifc)\ PB(II) vV
-3, (7 € poss(lo) A hs(lo|,)=f")V
(l—rifce R A 3,(m € posi(lo) A hs(lo|x) = f")}\
{l = rifce R : 3,(m € pose(lo) A hs(lo|z) = f)}

{l =rifce Ry : m¢esspos(l — rifc)\ P(II) v
-3 (7w € posg(lo) A hs(lo|z) = f') Vv
I —rif c e R}\

{l—=rifce R : 3,(m € poss(lo) A hs(lo|,) = f')}

{l—rifceRy : l->rifcg R = w¢esspos(l — rif ¢) \ PII) v
-3 (m € posg(lo) A hs(lo|z) =)\
{l—=rifce R : J,(m € poss(lo) A hs(lo|z) =)}
= {7 eIl (Lemma E.8.2),
assumption V,c g\ r(esspos(p) NI = 0) }
{l = rif ce Ry : true}\
{l=rifce R : 3,(r € pos;(lo) A hs(lo|z) = f')}

R\{l—rifceR : 3,(r € posy(io) A hs(io]s) = f')}
Ry \ stfiltere(r, /', R)
R(sthilter; (7, /', R))
Finally for 5.
B U{rP) \{m-i-a" : true}
(M~ \{e}) UfaP) \ {r-i-7 : true}

= {7 €Il (Lemma E.8.2) }
((M\ArH u{rh " \{eph U {r}) \{m-i- 7" : true}

E.8. Theorem 5.4.1 147

(MM\{rHu{r -7 : true}) "\ {eHu{aP) \{m-i- 7" : true}

((A\AT) "I\ {m - 7" = truep) \{e}) U{m}) \ {m i 7" : true}

(((A\AT)) I\ AD \{m - 7" = trueh) U{m}) \ {m i~ 7’ : true}

(@) \ D) UL\ {r-i -7 true}) \ {r-i-7' : true}

((@@\{m}) ="\ {eHh u{mh \{m-i- 7" : true}
(A\Ax)~ U{m D\ A{eD) \{m - - 7"+ true}
= {7 €Il (Lemma E.8.2),

assumption that II is non-overlapping }

(@) \ D\ fr -7+ truc)

(AN LT)T\ A{eD \fr i’ 1 <d < ar(f)}

(AN {x)"\ {m i’ 2 L <i <ar(f)}) \ {e}

(M\{r) U{r i~ 1<i<ar(f)}) ="\ {e}

(@M\{m})U{r-i : 1<i<ar(f)})~"\{e}

PN\ {mp) Ufm-i = 1 <i<ar(f)})

Now, with Lemma E.8.4 and Lemma E.8.7 (with II' = {7 -i-7" : i >
ar(f")} and using Lemma E.8.6), we have that our original thrgh term is
implied by thrgh(stgen’(stfilter¢(w, f/, R), (I \ {7} U{r -7 : 1 < i <
ar(f")}), S(sthltere(m, f/, R)), R(stfilter¢ (m, f/, R)), B(AL \ {7}) U {7 - i

1 < i < ar(f’)})), which holds by induction using the following. We
have thG(Stﬁltcrf(7r,f’.,R)),pGER(stﬁltcrf('n',f’,R) (a(tvl) N m(H) 7& 0 v (a(tal) =
O A esspos(l — rif ¢) CI A —3,(t =loc A true € rewr(co)))) per
definition of stfilter;.

For the other conjunct we have the following.

148 Chapter E. Strategy Tree Proofs

thrgh(stfunc(m, R, II)(L),
{ve{tul, : te &(R) A (7 € pos(t) = u € rewr(t|r))}
& posg(v)},
{pER(R) : 7 & esspos(p) \ B(T)}U
{l=rifce Ry : mepos(l)},
(BAD U{TP) \ {7 i7"« true}) U {m})

thrgh(stfunc(w, R, IT)(.L),
{tlulr : t€ &(R) A (7 € pos(t) = u € rewr(t|r)) A
™ & posg(t[ulx)},
{p € R(R) : 7 & esspos(p) \ P(II) }U
{l=rifce Ry : mepos(l)},
(BAD UA{r}) \{m-i-7" - true})

thrgh(stgen’(stfiltery (m, R),II\ {n}),
{tlulr : t€ &(R) A (m € pos(t) = u € rewr(t|r)) A
7 & posq(tful)},
(P ER(R) : 7 ¢ esspos(p) \ B(IU
{l—=rifce Ry : e poss(l)},
(BT U)\ {77 - true))

We derive relations between the arguments of the thrgh expressions above
and S(stfilter, (m, R)), R(sthilter, (r, R)) and P(II\ {7 }).

{tlu] : t€ S(R) A (m € pos(t) = u € rewr(t|;)) A
™ & posg(t[u]x)}

{tlul= : t€{t' © =F_ritcer,\r(t' =lo A true € rewr(co))} A
(m € pos(t) = u € rewr(t|s)) A 7 & posg(tfu].)}

{tlulx © =Firir cery\rR(t = lo A true € rewr(co)) A
(rm € pos(t) = u €rewr(t|r)) A 7 ¢ pos(t[u]r)}

N

{tlulx + =Firif cerp\r(t =lo A true € rewr(co)) A
™ & pos; (t[u]+)}
= {7 €Il (Lemma E.8.2),
assumption ¥ e g\ g(esspos(p) NI =0) }

E.8. Theorem 5.4.1 149

{t © =31rircer,\rR(t =lo A true € rewr(co)) A m & pose(t)}

c
{t © =31rircer\rR(t =lo A true € rewr(co)) A
(m € pose(t) V =Firif ce{i—r if ceR : mepos (1)} (E = 10 A
true € rewr(co)))}
{t © =31 ircer,\rR(t =lo A true € rewr(co)) A
=T ce{l—r if ceER : 7r€posf(l)}<7r € pOSf<t) ANt=lo N
true € rewr(co))}
{t © =31 ircer\rR(t = lo A true € rewr(co)) A
_'Ell—n- if ce{l—r if ceER: TrEposf(l)}(t =lo A true € rewr(co))}
{t © =31 ircer\r(t = lo A true € rewr(co)) A
=3 r if ceRpn{l—r if ¢ : meposy (1)} (t = lo A true € rewr(co))}
{t = TS ce(RF\R)U(RyN{l—rif c: 776posf(l)})(t =lo A
true € rewr(co))}
{t © =31 if ceRp\(R\{I—r if ¢ : mepose()}) (t = l0 A true € rewr(co))}
{t : _Ell—w‘ if ce Rp\{l—r if c€ER : wgposf(l)}(t =lo A true € I‘GWI‘(CO’))}
S{l—rifce R : m&pos(l)})
S(stfiltery (m, R))
Next for R.

{p € R(R) : m&esspos(p) \ P} U{l - rif ce Ry : m € posg(l)}
{peRs\R : messpos(p) \ PA)} U{l - rif c€ Ry : m € posg(l)}

({p€ Ry : messpos(p) \ PA)} \ {p € R : true})U
{l=rifce Ry : mepose(l)}

150

Chapter E. Strategy Tree Proofs

({pe Ry : messpos(p) \ PA)} U{l - rif c€ Ry : m € posg(l)})\
{peR : true}\{{ —=rif ce Ry : mepos(l)})

{ Assumption R C Ry }
{l—=rifce Ry : m&esspos(l — rif ¢) \ ' B(II) V 7w € pos;(D)}\
{l—=rifceR : m¢&pos(l)}

{l—=rifce Ry : m¢esspos(l — rif)\ 'B(II) V 7w € pos(l) V
(l—=rifce R A m¢&pose(1)}\
{l—=rifceR : m¢&pos(l)}

{l—=rifce Ry : m&esspos(l — rif ¢) \'P(II) V 7 € pos;(l) V
I —rif c e R}\
{l—=rifceR : m¢&pos(l)}

{l—rifceRy : l->rifc¢g R = w¢esspos(l — rif ¢)\ P(II) v
™ € posg () }\
{l—=rifceR : m¢&pos(l)}
{ 7 € I and assumption V¢ g\ r(esspos(p) NTT = 0) }
{l—=rifceR; : true}\{{l »rifce R : m ¢ pose(])}
Ry\{l—rifce R : m &pose(l)}

R; \ stfilter, (7, R)

R(stfiltery (m, R))

Finally for .

PBAHU{rH \{m-i-7" : true}
(@M~ \A{eh U{mh) \{m-i- 7" : true}
{7 el (Lemma E.8.2) }
((@@\{m) U{r)~ \{eh) u{m}) \{m i 7" : true}

(MM\{rH U {r -7 : true})*\{eHu{a}p) \ {m-i-7" : true}

E.8. Theorem 5.4.1 151

(@) \ {7 ¢ true})\ {e}) U{mh) \ fm-i- 7 : true}

(((AAT)) N AD \{m - 7"+ trueh) U{m}) \ {m i -7’ : true}

(((@@\AT)) N\ A Ufa) \{m i7"« truep) \ {m-i- 7' : true}

(AN Ax)"\ A{eH U{a) \{m i7"« true}
((@@\{m}) "t u{m) \{eP) \{m-i- 7" : true}
= {7 eIl (Lemma E.8.2),

assumption that II is non-overlapping }

(@\{x})) "\ {e) \ {m i~ : true}
I\ {7 }) ="\ {e}
PN {r})

As with the previous case, Lemma E.8.4 and Lemma E.8.7 (with II' = {7 -i-

/

7’ : true} and Lemma E.8.6) give us the original thrgh term is implied by
thrgh(stgen’ (stfiltery (m, R), II\{7}), &(stfilter, (7, R)), R(sthlter, (m, R)), P(II\
{7})), which holds by induction (using the assumption which holds per def-
inition of stfiltery).

o stready(R,1I) =0 A needy(R,II) =0 A 7 = r.needy (R, II); this means

thrgh(stgen’ (R, II), (R), R(R), P(I1))
thrgh(NF({r},stgen’ (R, II\ {7})), &(R), R(R), P(II))

thrgh(stgen' (R, I\ {7}),
{tliry : t € B(R) A Voegny(n' € pos(t) = (n') € rewr(t|r))},
{pe Eﬁ(ﬂ {m} Nesspos(p) C {#' : {x'} CTPID)}},
PAD U {7})

We derive relations between the arguments of the thrgh above and &(R),

R(R) and P(IT\ {7}).

{tldliry = 1€ S(R) A Vee(my(n' € pos(t) = (') € rewr(t]r))}

152 Chapter E. Strategy Tree Proofs

{tfo(m)]= : t € B(R) A (m € pos(t) = ¢(m) € rewr(t|:))}
{tlu]r : t € &(R) N (m € pos(t) = u € rewr(t|))}

{tlu]x : te{t' : 231 rifcer,\r(t' = lo A true € rewr(co))} A
(m € pos(t) = u € rewr(t|,))}

{tlulr : =Fir it cer,\rR(t = lo A true € rewr(ca)) A
(m € pos(t) = u € rewr(t|r))}

{t ©+ =3 ircer,\rR(t' =10 A true € rewr(co))}

&(R)

Next of 6.

{p e R(R) : {m} Nesspos(p) € {n" : {n'} CPA}}

{peRy\R : m g esspos(p)\ {n' : T7} C B}
= {7 eIl (Lemma E.8.2),
assumption Ve g\ p(esspos(p) N 1T = 0) }
R;\ R

R(R)
Finally for ‘3.
P U {r}
(@M@~ \ {e}) u{r}
= {m# € (viam €I, Lemma E.8.3, and assumption ¢ ¢ II) }
(@M~ u{rh) \ {e}
M {mh))"\ {e}

(I {7)"\ {e}

{ Assumption that II is non-overlapping }

E.8. Theorem 5.4.1 153

I\ {r}H) =1\ {e}

PN {r})

With Lemma E.8.4 we get that our original thrgh expression is implied by
thrgh(stgen’ (R, II\{7}), S(R), R(R), P(II\ {r})), which holds by induction.

The case for thrghy (stgeny, (Ry), {f(t1,...,tn) : true},0,0) is the similar. We
only look at the base case.

thrgh, (stgeny, (0, 1), &(0), R(0), P(II))
thrghy, (E, &(0), R/(0), P(II))

Yies0),1—r if cem(0)(O(t, 1) NP(I) # 0 v
(0(t, 1) =0 A esspos(l — rif ¢) CP(I) A
—3,(t =1lo A true € rewr(co)))) A
(60) #0 = Ry CR(R))
{ Assumption }

true

154 Chapter E. Strategy Tree Proofs

Appendix F

Benchmarks

In this appendix we give the specifications of the benchmarks we use in Chapter 6.
Here we leave the signature implicit as it is trivially deduced from the rewrite
rules. Note that we write 0 instead of 0() even though it is a function (of arity 0).

F.1 Prioritised eq

The rewrite rules for this benchmark are from [BBKW89] and are as follows and
the priority is such that when both can be applied the first will be applied.

eq(x,z) — true
eq(x,y) — false

F.2 Prioritised fac

The rewrite rules for this benchmark are from [BBKW89] and are as follows and
the priority is such that when both can be applied the first will be applied.

fac(0) — 5(0)
fac(z) — mult(z, fac(P(x)))

F.3 fib(15)
The set of rewrite rules for this benchmark is as follows.
plus(n,0) — n

plus(n,S(m)) — S(plus(n,m))

(continued on next page)

156 Chapter F. Benchmarks

fib(0) - 0
fib(5(0)) - 5(0)
fib(S(S(n))) — plus(fib(n), fib(S(n)))

The term that is rewritten to normal form for this benchmark is the following.

fib(S(S(S(S(S(SS(S(S(S(S(S(S(S5(5(0))))) 1)) M)

F.4 evalexp(5)

For this benchmark we separate the rewrite rules in three sets such that they can
be easily reused in other benchmarks. First we have the “basic eval” rules.

if (true(), z,y) -

if (false(),z,y) — 'y

if (b, x, x) — oz
and(true(), x) —
and(false(), x) — false()
and(z, true()) —
and(z, false()) — false()
eq(x, x) — true()
70, S(m) — false()
eq(S(n), Z()) — false()
eq(S(n),S(m)) — eq(n,m)
sucel(n)

!
<
3
=
2
2

A
A
A
g2
g2

=
g2
g2

plusl?(n, Z())

plus17(n, S(m)) sucelT(plusl7(n,m))

mult17(n, Z()) Z()
mult17(n, S(m)) plus17(n, mult17(n, m))
expli(n, Z()) succl7(Z())

Ll

expl7(n,S(m)) mult17(n, expl7(n,m))

Secondly, we have the “expression” rules.

(Ea:z E:vplus(e €2))
eq(Fzz, Exmult(e, €2))
eq(Exz, Exexp(e, e2))
eq(Bus(), Br=()

Ll
B
Ve
gy
Scoooo

F.4. evalexp(5) 157

eq(Ezs(f), Exs(e)) - eq(f.e)

eq(Exs(f), Explus(e, €2)) — false()

eq(Exs(f), Exmult(e, e2)) — false()

eq(Exzs(f), Exexp(e, e2)) — false()

eq(Explus(f, f2), Exz()) — false()

eq(Explus(f, f2), Exs(e)) — false()

eq(Explus(f, f2), Paplus(e,e2)) — and(eq(f,), ea(f2,¢2))
eq(Explus(f, f2), Exmult(e,e2)) — false()

eq(Explus(f, f2), Exexp(e, e2)) — false()

eq(Ezmult(f, f2), Exz()) — false()

eq(Exmult(f, f2), Exs(e)) — false()

eq(Exmult(f, f2), Explus(e,e2)) — false()

eq(Exmult(f, f2), Exmult(e,e2)) — and(eq(f,e), eq(f2,€2))
eq(Exmult(f, f2), Exexp(e,e2)) — false()

eq(Ezexp(f, f2), Fxz()) — false()

eq(Breap(f. 12), Brs(e)) — Jalse)

eq(Exexp(f, f2), Explus(e, e2)) — false()

eq(Exexp(f, f2), EFxmult(e,e2)) — false()

eq(Everp(f. f2), Eveap(e,e2)) — and(eq(f, e), ea(f2,¢2))
evall7(Ezxz()) Z()

evall7(Exs(n)) succlT(evall7(n))

plus17(evall7(n), evall7(m))
mult17(evall7(n), evall7(m))
expl7(evallT(n), evall7(m))

evall7(Exmult(n, m))

(
(
evall7(Ezplus(n, m))
(
evall7(Ezexp(n,m))

LUl

The last set of rules is specific to this benchmark and consist of the following rules.

expand(Ezz()) — Exz()
expand(Ezs(n)) — Explus(Ezs(Ezz()),n)
expand(Explus(n, m)) — FEzplus(expand(n), expand(m))
expand(Exmult(n, Ezz())) — Ezz()
expand (Exmult(n, Exs(Exz()))) — expand(n)
expand (Ezmult(n, Exs(Exs(m)))) — expand(Exmult(n,

expand (Ezs(Ezs(m)))))
expand (Ezmult(n, Exzs(Ezplus(m,0)))) — expand(Exmult(n,

expand (Exzs(Explus(m, 0)))))
expand (Exmult(n, Bxs(Exmult(m,0)))) — expand(Ezxmult(n,

expand (Ezs(Exmult(m,0)))))
expand (Ezmult(n, Exs(Exezp(m,0)))) — expand(Exmult(n,
expand(Exzs(Ezexp(m, 0)))))
expand (Ezmult(n, Exzplus(m, 0))) — expand(Ezplus(Exmult(n,m),
Ezmult(n,o0)))

(continued on next page)

158

expand (Exzmult(n, Exmult(m, 0)))
expand (Ezmult(n, Exexp(m,o0)))
expand(Ezexp(n, Exz()))

expand(Ezexp(n, Exs(Ezz())))
expand (Ezexp(n, Exs(Ezs(m))))

expand(Ezexp(n, Exs(Ezplus(m,o0))))

expand(Ezexp(n, Exs(Ezmult(m, 0))))

expand (Ezexp(n, Exs(Erezp(m,o0))))
expand(Ezexp(n, Explus(m,o0)))
expand (Ezexp(n, Exmult(m,0)))

expand (Ezexp(n, Exexp(m, o0)))

evalexpl7(n)

two()
f(x)

—
—

Chapter F. Benchmarks

expand (Exmult(n,
expand (Exmult(m, 0))))
expand (Ezmult (n,
expand(Ezexp(m, 0))))
expand(n)
expand (Ezexp(n,
expand (Ezs(Ezs(m)))))
expand (Ezexp(n,
expand (Exzs(Explus(m, 0)))))
expand(Ezexp(n,
expand(E:z:s(E:z:mult(m o))
expand (Ezexp(n,
empand(Exs(Exemp (m,0)))))
expand (Exmult(Exexp(n,m),
Ezexp(n,o)))
expand (Ezexp(n,
expand (Exmult(m, 0))))
expand (Ezexp(n,
expand(Ezexp(m, 0))))

evall7(expand(n))

eq(evall7(Ezexp(two(), z)),
evalexpl7(Ezexp(two(),x)))

The term that is rewritten to normal form for this benchmark is the following.

F.5 evaltree(5)

This benchmark uses the “basic eval”

combination with the following rules.

evaltreel7(n) —
getval(leaf (val)) —
getval(node(val, maz,t,u)) —

mult17(expl7(S(S(Z())), p
pred17(expl7(S(S(Z ()))

val
val

and “expression”

rules of Section F.4 in

d17(n)),
n)))

F.6. evalsym(5)

getmazx (leaf (val)) —
getmazx(node(val, maz,t,u)) —
busldtree(Z(),m) —
tmp , (left, leftval, right,

rightval, max) —
tmps (left, leftval, right) —

tmpy(n, left, leftmaz, leftval) —

tmp, (n, left) —
buildtree(S(n), m) —
() —

159

val
mazx

leaf (n)

node(plus17(leftval, rightval), maz,
left, right)
tmp, (left, leftval, right, getval (right),
getmaz (right))
tmps (left, leftval,
buildtree(n, succl7(leftmaz)))
tmpy(n, left, getmaz (left),
getval(left))
tmpq (n, buildtree(n, m))
eq(evaltreelT(z),
getval (buildtree(x, Z())))

The term that is rewritten to normal form for this benchmark is the following.

FS(S(S(S(S(Z0NN)

F.6 evalsym(5)

This benchmark uses the “basic eval” and “expression” rules of Section F.4 in

combination with the following rules.

evalsym17(Ezz())
evalsym17(Ezs(n))
evalsym17(Explus(n,m))
evalsym17(Exmult(n, Fxz()))
evalsym17(Exmult(n, Exs(m))
evalsym17(Exmult(n, Explus(m,0)))

~ 2()

— succlT(evalsym17(n))

— plus1T(evalsym17(n), evalsym17(m))

. 2()

— evalsym17(Explus(Exmult(n, m),n))

— evalsym17(Explus(Exmult(n, m)
Ezmult(n,o0)))

)
evalsym17(Exmult(n, Exmult(m, 0))) — evalsym17(Exmult(Exmult(n,m), o))
((

(
evalsym17(Ezmult(n, Ezexp(m,o0)))
evalsym17(Ezexp(n, Exz()))
evalsym17(Ezexp(n, Exs(m)))
evalsym17(Ezexp(n, Explus(m, 0)))

evalsym17(Ezexp(n, Exmult(m,0)))
evalsym17(Ezexp(n, Exexp(m,o0)))

— evalsym17(Exmult(n, dec(Exezp(m, 0))))

— succl7(Z())

— evalsym17(Exmult(Exexp(n, m),n))

— evalsym17(Exmult(Exexp(n, m),
Ezexp(n,o)))

— evalsym17(Exexp(Ezexp(n,m), o))

— evalsym17(Ezexp(n, dec(Exexp(m, 0))))

(continued on next page)

160

dec(Exexp(n
dec(Exexp(n
dec(Exexp(n
dec(Ezexp(n
dec(FEzexp(n

two()
f(x)

» Exz()))

, Exs(m)))

, Explus(m, 0)))
, Exmult(m, 0)))
, Exexp(m, 0)))

Chapter F. Benchmarks

— Exs(Exz())

— Exmult(Ezezp(n,m),n)

— Exmult(Ezezp(n,m), Exezp(n, o))
— dec(Exexp(Exexp(n,m),o0))

— dec(Exexp(n, dec(Ezexp(m, 0))))

— Exs(FErs(Ezz()))
— eq(evall7(Ezexp(two(), x)),
evalsym17(Ezexp(two(), x)))

The term that is rewritten to normal form for this benchmark is the following.

F.7 set

add

The set of rewrite rules for this benchmark is as follows.

if (true(), x,y)
if (false(), . y)
if (b, x, x)

insert(n, empty())
insert(n, cons(m,1))

—
-y
— T

true()
false()

le(n,m)

Ll

cons(n, empty())
if (le(n,m),
if (le(m, n),
cons(m,1),
cons(n, cons(m,1))),
cons(m, insert(n,l)))

i

F.8. all even

161

The term that is rewritten to normal form for this benchmark is the following.

all even

The set of rewrite rules for this benchmark is as follows.

and(true(),b) — b

and(false(),b) — false()

even(0) — true()

even(S(n)) — odd(n)

0dd(0) — false()

0dd(S(n)) — even(n)
alleven(empty()) — true()
alleven(cons(n,l)) — and(even(n), alleven(l))

The term that is rewritten to normal form for this benchmark is the following.

alleven(

162 Chapter F. Benchmarks

F.9 exp peano
The set of rewrite rules for this benchmark is as follows.

exp(n,0) — 5(0)
exp(n,S(m)) — mult(ezp(n,m),n)

mult(n,0) - 0
mult(n,S(m)) — plus(mult(n,m),n)

plus(n,0) — n
plus(n,S(m)) — S(plus(n,m))

The term that is rewritten to normal form for this benchmark is the following.

ezp(S(5(00))), S(S(S(0()))))

F.10 exp binary

The set of rewrite rules for this benchmark is as follows.

not(true()) — false()

not(false()) — true()

suce(1) — dub(false(), 1)

suce(dub(false(), p)) — dub(true(),p)

succ(dub(true(),p)) — dub(false(), succ(p))

addc(false(), 1,p) — succ(p)

addc(true(), 1,p) — succ(suce(p))

addc(false(),p, 1) — suce(p)

addc(true(), p, 1) — suce(suce(p))

addc(b, dub(c, p), dub(c, q)) — dub(b, addc(c, p, q))

addc(b, dub(false() p), dub(true(),q)) — dub(not(b), addc(b,p,q))

addc(b, dub(true(), p), dub(false(),q)) — dub(not(b), addc(b,p,q))

multir(false(),p,1,q) — q

multir (true(),p, 1, q) — addc(false(),p, q)

multir (b, p, dub(false(), q),r — multir(b, p, q, dub(false(),r))

multir (false(), p, dub(true(), q),) — multir(true(), r, g, dub(false(),r))

multir(true(), p, dub(true(), q),r) — multir(true(), addc(false()7 D7),
q, dub(false(),r))

exp(p,0) ~

F.11. higher-order binary search 163

exp(p, nat(1)) — p
ezp(p, nat(dub(false(), q))) — exp(multir(false(), 1, p, p), nat(q))
exp(p, nat(dub(true(), q))) — multir(false(), 1, p,

exp(multir (false(), 1, p,p), nat(q)))

The term that is rewritten to normal form for this benchmark is the following.

exp(dub(false(), 1), nat(dub(true(), dub(false(), dub(true(), dub(false(),1))))))

F.11 higher-order binary search

The mCRL2 data specification for this benchmark is given below. The evaluated
term is bs(3435, f,100000).

map f: Nat -> Nat;
bs: Nat#(Nat -> Nat)#Nat -> Nat;
bs2: Nat#(Nat -> Nat)#Nat#Nat -> Nat;

var n,m,x,y: Nat;
g: Nat -> Nat;
b: Bool;
eqn f(n) = n*n;
bs(n,g,m) = bs2(n,g,0,m);
bs2(n,g,x,y) = if(

x+tl ==y,
X,
if(

f(h) < n,

bs2(n,g,h,y),
bs2(n,g,x,h),
) whr h = (x+y) div 2 end
)3

164 Chapter F. Benchmarks

Bibliography

[Aug85]

[BBKS7]

[BBKWS9)

[BFGT01]

[BKS6]

[BVEG*87]

[CDE*02]

L. Augustsson. Compiling pattern matching. In J.-P. Jouannaud,
editor, Proceedings of a Conference on Functional Programming
Languages and Computer Architecture (FPCA), volume 523 of Lec-
ture Notes in Computer Science, pages 368-381, 1985. [2, 3, 19]

J.C.M. Baeten, J.A. Bergsta, and J.W. Klop. Term rewriting sys-
tems with priorities. In Pierre Lescanne, editor, Rewriting Tech-
niques and Applications, proceedings (RTA’87), volume 256 of Lec-
ture Notes in Computer Science, pages 83-94, 1987. [37]

J.C.M. Baeten, J.A. Bergstra, J.W. Klop, and W.P. Weijland.
Term-rewriting systems with rule priorities. Theoretical Computer
Science, 67(2-3):283-301, 1989. [80, 155]

S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde,
B. Lisser, and J.C. van de Pol. pCRL: A toolset for analysing
algebraic specifications. In G. Berry, H. Comon, and A. Finkel, ed-
itors, Computer Aided Verification: 13th International Conference,
CAV 2001, Paris, France, July 18-22, 2001, Proceedings, volume
2102 of Lecture Notes in Computer Science, pages 250-254, 2001.
[2, 85]

J.A. Bergstra and J.W. Klop. Conditional rewrite rules: Conflu-
ence and termination. Journal of Computer and System Sciences,
32(3):323-362, 1986. [9]

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Ken-
naway, M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. In
J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors, PARLE
Parallel Architectures and Languages Europe, volume 259 of Lecture
Notes in Computer Science, pages 141-158, 1987. [2]

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J.F. Quesada. Maude: specification and program-

166

[DJO]

[FKWO00]

[FW76]

[GKO4]

[GLMO2]

[GMR*08]

[GMvyWUO7]

[GW.JIMJ00]

[GWM+93)]

Bibliography

ming in rewriting logic. Theoretical Computer Science, 285(2):187—
243, 2002. [85]

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and
Semantics (B), pages 243-320. MIT Press, 1990. [9]

W.J. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on
eager machinery. ACM Transactions on Programming Languages
and Systems, 22(1):45-86, 2000. [60]

D.P. Friedman and D.S. Wise. Cons should not evaluate its ar-
guments. In S. Michaelson and R. Milner, editors, International
Colloquium on Automata, Languages and Programming (ICALP
776), pages 257-284, 1976. [3]

J.F. Groote and M. Keindnen. Solving disjunctive/conjunctive
boolean equation systems with alternating fixed points. In
K. Jensen and A. Podelski, editors, Proceedings of the 10th In-
ternational Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’04), volume 2988 of Lecture
Notes in Computer Science, pages 436-450, 2004. [56]

H. Garavel, F. Lang, and R. Mateescu. An overview of CADP
2001. FEuropean Association for Software Science and Technology
(EASST) Newsletter, 4, 2002. [85]

J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and
M.J. van Weerdenburg. Analysis of distributed systems with
mCRL2. In M. Alexander and W. Gardner, editors, Process Alge-
bra for Parallel and Distributed Processing, Computational Science
Series, chapter 4, pages 99-128. Chapman and Hall/CRC, 2008. [2]

J.F. Groote, A.H.J. Mathijssen, M.J. van Weerdenburg, and
Y.S. Usenko. The formal specification language mCRL2. In
E. Brinksma, D. Harel, A. Mader, P. Stevens, and R. Wieringa,
editors, Methods for Modelling Software Systems (MMOSS), num-
ber 06351 in Dagstuhl Seminar Proceedings, 2007. [2]

J.A. Goguen, T. Winkler, and K. Futatsugi J. Meseguer, and J.-P.
Jouannaud. Introducing obj. In J.A. Goguen and G. Malcolm,
editors, Software Engineering with OBJ: Algebraic Specification in
Action, Advances in Formal Methods, pages 3-167. Kluwer Aca-
demic Publishers, 2000. [4, 5, 60]

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouan-
naud. Introducing OBJ. In Joseph Goguen, editor, Applications of
Algebraic Specification using OBJ. Cambridge, 1993. [4]

Bibliography

[HFA*96]

[HHPWO07]

[HI76]

[HLI1]

[LNS82]

[LS93]

[Mad97]

[Mar92]

[Mat03]

[Nip89]

[OF97]

167

P.H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann,
M. Beemster, E. Chailloux, C.H. Flood, W. Grieskamp, J.H.G.
Groningen, and K. Hammond. Benchmarking implementations of
functional languages with “pseudoknot”, a float-intensive bench-
mark. Journal of Functional Programming, 6:621-655, 1996. [3]

P. Hudak, J. Hughes, S.L. Peyton Jones, and P. Wadler. A history
of Haskell: being lazy with class. In The Third ACM SIGPLAN
History of Programming Languages Conference (HOPL-III), pages
12-1-12-55, 2007. [2]

P. Henderson and J.H. Morris Jr. A lazy evaluator. In POPL
"76: Proceedings of the 3rd ACM SIGACT-SIGPLAN symposium
on Principles on programming languages, pages 95-103, 1976. [3]

G.P. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems, I and II. In Computational Logic - Essays in Honor of
Alan Robinson, pages 395-443, 1991. [54]

J.-L. Lassez, V.L. Nguyen, and E.A. Sonenberg. Fixed point the-
orems and semantics: a folk tale. Information Processing Letters,
14(3):112-116, 1982. [92]

J. Launchbury and P.M. Sansom, editors. The Glasgow Haskell
Compiler: A Retrospective., Workshops in Computing, 1993. [2,
85]

A. Mader. Verification of Modal Properties using Boolean Equation
Systems. PhD thesis, Technical University of Munich, 1997. [55,
56)

L. Maranget. Compiling lazy pattern matching. In Proceedings of
the 1992 conference on Lisp and Functional Programming, pages
21-31, 1992. [3, 19]

R. Mateescu. A generic on-the-fly solver for alternation-free boolean
equation systems. In H. Garavel and J. Hatcliff, editors, Proceedings
of the 9th International Workshop on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’03), volume 2619
of Lecture Notes in Computer Science, pages 81-96, 2003. [56]

T. Nipkow. Term rewriting and beyond — theorem proving in Is-
abelle. Formal Aspects of Computing, 1/1:320-338, 1989. [2]

K. Ogata and K. Futatsugi. Implementation of term rewritings
with the evaluation strategy. In H. Glaser, P.H. Hartel, and
H. Kuchen, editors, Proceedings of the 9th International Sympo-
stum on Programming Languages: Implementations, Logics, and

168

[OF00]

[OLi00]
[Pey87]
[Pey03]

[Pla95]

[PvE93]

[Sch8s]

[Too]
[vdBHKO02]

[vdBvDH'01]

[vdPO1]

Bibliography

Programs, PLILP’97, volume 1292 of Lecture Notes in Computer
Science, pages 225-239, 1997. [4, 60]

Kazuhiro Ogata and Kockichi Futatsugi. Operational semantics of
rewriting with the on-demand evaluation strategy. In Proceedings of
the 2000 ACM symposium on Applied computing (SAC ’00), pages
756-763, 2000. [5]

P.A. Olivier. A Framework for Debugging Heterogeneous Applica-
tions. PhD thesis, University of Amsterdam, 2000. [81]

S.L. Peyton Jones. The implementation of functional programming
languages. Prentice-Hall, 1987. [2, 3, 19]

S.L. Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge, 2003. [2]

M.J. Plasmeijer. Clean: a programming environment based on term
graph rewriting. Electronic Notes in Theoretical Computer Science,
2:215-221, 1995. [2, 85]

R. Plasmeijer and M. van Eekelen. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley Longman Publishing
Co., Inc., 1993. [4, 54]

Ph. Schnoebelen. Refined compilation of pattern-matching for func-
tional languages. Science of Computer Programming, 11(2):133—
159, 1988. [2, 3, 19]

mCRL2 Toolset. http://www.mcrl2.org/. [85]

M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier.
Compiling language definitions: the ASF+SDF compiler. ACM
Transactions on Programming Languages and Systems (TOPLAS),
24(4):334-368, 2002. [18, 19]

M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier,
J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF
Meta-environment: A component-based language development en-
vironment. In R. Wilhelm, editor, Compiler Construction: 10th
International Conference, CC 2001, volume 2027 of Lecture Notes
in Computer Science, pages 365-370, 2001. [2, 19, 85]

J.C. van de Pol. Just-in-time: On strategy annotations. In Bern-
hard Gramlich and Salvador Lucas, editors, WRS 2001, 1st Inter-
national Workshop on Reduction Strategies in Rewriting and Pro-
gramming, volume 57 of Electronic Notes in Theoretical Computer
Science, pages 41-63, 2001. [2, 4, 10, 12, 13, 89)

Bibliography

[vdP02]

[Vis04]

[VisO5]

[Vit96]

[vWO07]

169

J.C. van de Pol. JITty: a rewriter with strategy annotations. In
S. Tison, editor, Rewriting Techniques and Applications : 13th In-
ternational Conference, RTA 2002, Copenhagen, Denmark, July
22-24, 2002. Proceedings, volume 2378 of Lecture Notes in Com-
puter Science, pages 367-370, 2002. [11, 13, 51]

Eelco Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In C. Lengauer,
D. Batory, C. Consel, and M. Odersky, editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216-238, 2004. [2]

E. Visser. A survey of strategies in rule-based program transforma-
tion systems. Journal of Symbolic Computation, 40:831-873, 2005.

2]

M. Vittek. A compiler for nondeterministic term rewriting sys-
tems. In Rewriting Techniques and Applications, 7th International
Conference, RTA-96, New Brunswick, NJ, USA, July 27-30, 1996,
Proceedings, volume 1103 of Lecture Notes in Computer Science,
pages 154-167, 1996. [18, 19]

M.J. van Weerdenburg. An account of implementing applicative
term rewriting. In S. Antoy, editor, Proceedings of the Sizth Inter-
national Workshop on Reduction Strategies in Rewriting and Pro-
gramming (WRS 2006), volume 174/10 of Electronic Notes in The-
oretical Computer Science, pages 139-155, 2007. [2, 3, 4, 10, 12,
18, 79, 81, 82, 85, 86, 87]

Index

annotation, 51

application, 7

ar, 7

ea, 54

arity, 7

—, see rewrite, relation
w

—Y, see rewrite, sequence
—* see rewrite, relation

|, see subterm
[], see subterm
[— |, see substitution

G, 31

X, 95

clean, see match tree, reduction
condition-evaluation function, 9
>, 12

0,8

-, see position

E

match tree, 34

strategy tree, 61
€, see position
essential

argument, 54

detection, 54

position, see position, essential

esspos, see position, essential

F, 7

F
match tree, 20
strategy tree, 61

fixed point
approximation, 92
definition, 92
maximal, 56
minimal, 91
full, 10, 93
strategy tree, see thorough, full

v, see match tree, generation
1

", see match tree, generation

H, 61

head normal form, 9

head thorough, see thorough, head
hs, 7

in-time, 10, 93
strategy tree, see thorough, in-time
index, 7
=, see strategy tree, equivalence
=, See strategy tree, equivalence
=,, see match tree, equivalence
=,, see fixed point, definition

<, see strategy tree, equivalence
<, see strategy tree, equivalence

M, 26
M1, 21
match tree
building, see match tree, generation
combining, 25
definition, 27, 32, 35
soundness, 30
specification, 25
equivalence, 26

Index

generation
definition, 26
single rule, see match tree, single
rule generation
specification, 19, 31, 33
matching
definition, 22, 26, 32, 35, 37
specification, 19, 33, 37
optimisation, see match tree, reduc-
tion
prioritisation
definition, 38
soundness, 38
properties, 27, 37
reduction
optimisation, 43, 44
soundness, 46
semantics, see match tree, match-
ing, definition
single rule generation, 20
definition, 23, 32, 76
soundness, 25, 32
syntax, 20
M, 19
1, see match tree, matching
u, see fixed point, minimal

N, 26
needg, 70
needy’, 71
need,, 70
needy, 71
NF, 61
normal form, 9
head, see head normal form
normalising (strongly), 9
v, see fixed point, maximal

overlap, see positions, overlap
, see position

P, 7
I, see match tree, combining
pattern, 7, 9

171

¢, see term, construction function

position, 7
essential, 10
valid, 8

positions
overlap, 93

pos, see position, valid

posg, see position, valid

pos,,, see position, valid

prior, see match tree, prioritisation
1, 55

i, 93

Uy, 93

R, 9
R, 22, 26
R, 37
reduce, see match tree, reduction
rewrite, see rewrite, function, main
function
main, 14
specialised, 15
relation, 9
rule, 9
sequence, 9
term rewrite system, 9
rewritey, see rewrite, function, special-
ised
rewriter
compiling, 13
interpreting, 13

S, 20

S, 26

St 21

¥, 7
signature, 7
stable-head form, 9
stfiltery, 72
stfiltery, 72
stfunc, 72
stgen, 72
stgen’, 72

172

strat, see strategy, sequential, genera-
tion
strategy
sequential, 10
as strategy tree, see strategy tree,
sequential strategies
generation, 12
semantics, 11
tree, see strategy tree
strategy tree, 61
determinisation, 66
equivalence, 66
generation, 72
normalisation, see thorough
semantics, 61
sequential strategies, 62
stready, 71
strict, 54
substitution, 7
implicit, 13
symbol
function, 7

head, 7

T, 7
T, 61
term, 7
applicative, 7
construction, see term, temporary,
construction
construction function, 52
subterm, 7
temporary, 49
construction, 52
thorough, 67
full, 70
head, 67
in-time, 70
thrgh, see thorough
thrgh,, see thorough, head
tree
strategy, see strategy tree

v, 7

Index

var, 7

w1, 71
w2, 71
weight function, 71

X
match tree, 22

strategy tree, 61
&, 55

Efficient Rewriting Techniques

Summary

This thesis considers three aspects of the (efficient) implementation of term rewrite
systems. For efficient matching of terms against rules we introduce a formal notion
of match trees. These match trees can be used to simultaneously match a term
against multiple rewrite rules.

The second aspect is that of temporary-term construction. After each applica-
tion of a rewrite rule, a new (often temporary) term is constructed. In order to
make rewriting as efficient as possible, it is shown how to annotate these temporary
terms such that the information about which (sub)terms are already rewritten to
normal form is preserved. This allows strategies to be written such that these
subterms, known to be in normal form, will not be considered a second time. To
avoid needless construction of temporary terms, it is also shown how to determine
what subterms will be rewritten later on for sure, allowing for immediate rewriting
of such terms.

Finally, the notion of strategy trees is introduced. These strategy trees allow for
a flexible specification of lazy rewrite strategies. Conditions are given for strategy
trees that guarantee that rewriting a term results in a normal form of that term.
Also, a method is given to automatically generate strategy trees that satisfy these
conditions.

Curriculum Vitae

In 1981, on the 8th of August, Muck Joost van Weerdenburg was born in ’s-Her-
togenbosch, the Netherlands. He graduated at the Stedelijk Gymnasium ’s-Her-
togenbosch in 1999, after which he studied Technische Informatica (Computer
Science) at the Eindhoven University of Technology (TU/e). There he obtained
his Master’s degree in 2004 (cum laude) with his thesis on the GenSpect Process
Algebra, which formed the basis of the process part of the language mCRIL2. The
following four years he stayed at the TU/e as a Ph.D. student. During this time
he made contributions to the development and implementation of the mCRL2
language and toolset and researched various subjects such as (timed) process alge-
bra, aspects of structural operational semantics and the implementation of rewrite
systems.

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: theoret-
ical and experimental aspects. Faculty
of Mathematics and Natural Sciences,
UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Industrial
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Systems.
Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and Com-
plexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta FEst:
Verification of Probabilistic, Real-time
and Parametric Systems. Faculty of
Science, Mathematics and Computer
Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics
and Natural Sciences, UL. 2002-07

A. Fehnker. C(Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Sys-
tems. Faculty of Science, Mathematics
and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information
Filtering: Concepts and Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Fxten-
sions of Semantical Models. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Ezploring Software Sys-
tems. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2002-13

J.I. van Hemert. Applying FEvo-
lutionary Computation to Constraint
Satisfaction and Data Mining. Faculty
of Mathematics and Natural Sciences,
UL. 2002-14

S. Andova. Probabilistic Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU /e. 2002-15

Y.S. Usenko. Linearization in
wCRL. Faculty of Mathematics and
Computer Science, TU /e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for component
composition and construction. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representa-
tions. Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and
Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras with
Data and Timing. Faculty of Mathe-
matics and Computer Science, TU/e.
2003-05

S.V. Nedea. Analysis and Simula-
tions of Catalytic Reactions. Faculty of
Mathematics and Computer Science,
TU/e. 2003-06

M.E.M. Lijding. Real-time Schedul-
ing of Tertiary Storage. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Pro-
cess Annotation — CoMPAs. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata -
A Formal Approach to the Modeling
of Collaboration Between System Com-
ponents. Faculty of Mathematics and
Natural Sciences, UL. 2003-10

D.J.P. Leijen. The A Abroad — A
Functional Approach to Software Com-
ponents. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance
Ratios for the Differencing Method.
Faculty of Mathematics and Computer
Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive
Theorem Proving. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Com-
puting — Splicing and Membrane sys-
tems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Transla-
tion. Faculty of Mathematics and Nat-
ural Sciences, UL. 2004-04

Y. Qian. Data Synchronization
and Browsing for Home Environments.
Faculty of Mathematics and Computer
Science and Faculty of Industrial De-
sign, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specification
Formats. Faculty of Sciences, Divi-

sion of Mathematics and Computer
Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formal-
ization and Applications. Faculty of
Science, Mathematics and Computer
Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents
in Bargaining Games: An Fvolu-
tionary Investigation of Fundamentals,
Strategies, and Business Applications.
Faculty of Technology Management,
TU/e. 2004-08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of
Reactive Systems. Faculty of Mathe-
matics and Computer Science, TU /e.
2004-09

M. Niqui. Formalising Ezxact Arith-
metic: Representations, Algorithms

and Proofs. Faculty of Science, Math-
ematics and Computer Science, RU.
2004-10

A. Loh. Ezxploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Plan-
ning Algorithms for Car Navigation.
Faculty of Mathematics and Computer
Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU /e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2004-14

F. Alkemade. FEvolutionary Agent-
Based Economics. Faculty of Technol-
ogy Management, TU /e. 2004-15

E.O. Dijk. Indoor Ultrasonic Posi-
tion Estimation Using a Single Base
Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2004-17

M.M. Schrage.
Presentation-oriented — Editor for
Structured Documents. Faculty of
Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov.
Quantitative Prediction of Quality At-
tributes for Component-Based Soft-
ware Architectures. Faculty of Math-
ematics and Computer Science, TU/e.
2004-19

Prozima - A

P.J.L. Cuijpers. Hybrid Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar.
Supervisory Machine Control by
Predictive-Reactive Scheduling. Fac-
ulty of Mechanical Engineering, TU /e.
2004-21

E. Abraham. An Assertional Proof
System for Multithreaded Java - Theory
and Tool Support- . Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Ezxperiments in Rights
Control - FExpression and FEnforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System Ar-
chitectures. Faculty of Mathematics
and Computing Sciences, TU/e. 2005-
06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-10

A.M.L. Liekens. Fuvolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classifica-
tion and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Sim-
ulation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with

Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of

Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU. 2005-
21

Y. W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Systems.
Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Mathe-
matics and Computer Science and Fac-
ulty of Mechanical Engineering, TU /e.
2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted wverification of JML pro-
grams. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nonde-
terministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2006-
13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Computer
Science, TU /e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. FEzpressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU /e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for FEzogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composition.
Faculty of Mathematics and Natural
Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for stream-
ing DSP applications. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Abnor-
malities in Locally Autonomous Dis-
tributed Systems. Faculty of Mathe-
matics and Computing Sciences, RUG.
2007-03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandan Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trcka. Silent Steps in Transi-
tion Systems and Markov Chains. Fac-
ulty of Mathematics and Computer
Science, TU /e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series
of Empirical Studies about the UML.
Faculty of Mathematics and Computer
Science, TU /e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU /e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the FElectronic
Voting Controversy. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renowvation of Id-
tomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-03

A.M. Marin. An Integrated Sys-
tem to Manage Crosscutting Concerns
in Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-
ulty of Mechanical Engineering, TU /e.
2008-05

M. Bravenboer. FEzercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Exchange Protocols.
Faculty of Sciences, Division of Math-

ematics and Computer Science, VUA.
2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a

Toolkit. Faculty of Mathematics and
Computer Science, TU /e. 2008-10

1.S. Zapreev. Model Checking
Markov Chains: Techniques and Tools.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior
Specifications Using Context-Sensitive
Wildcards. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Diirr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of
Mechanical Engineering, TU/e. 2008-
16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf Mining Semi-
structured Data, Theoretical and FEx-
perimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU /e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Mathe-
matics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2008-27

I.LR. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering
Algorithms for Service Discovery and
Provisioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded Real-
Time Control Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2009-05

M.J. van Weerdenburg. FEfficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

	Introduction
	Preliminaries
	Rewriting
	Compiling Rewriters

	Match Trees
	Introduction
	Match Trees
	Extensions
	Conditional Rewrite Rules
	Adding Applicative Terms
	Adding Priority

	Optimisation

	Temporary-Term Construction
	Introduction
	Annotations
	Construction
	Essential-Argument Detection

	Strategy Trees
	Introduction
	Syntax and Semantics
	Normalisation
	Strategy Generation
	Strategies and Matching

	Evaluation
	Introduction
	Match Trees
	Temporary-Term Construction
	Strategy Trees
	Previous Results

	Conclusions
	Fixed-Point Definitions
	Introduction
	Semantics
	Approximations

	Preliminaries Proofs
	Definitions and Lemmata
	Theorem 2.1.1
	Theorem 2.1.2
	Corollary 2.1.3
	Corollary 2.1.4
	Corollary 2.1.5
	Theorem 2.1.6

	Match-Tree Proofs
	Theorem 3.2.3
	Corollary 3.2.4
	Property 3.2.5
	Theorem 3.2.7
	Theorem 3.3.1
	Property 3.3.3
	Theorem 3.3.4
	Theorem 3.4.1
	Theorem 3.4.2

	Temporary-Term-Construction Proofs
	Lemmata
	Theorem 4.3.1
	Theorem 4.3.2
	Theorem 4.3.3

	Strategy Tree Proofs
	Definitions and Lemmata
	Theorem 5.2.1
	Theorem 5.2.2
	Theorem 5.2.8
	Theorem 5.3.1
	Theorem 5.3.2
	Theorem 5.3.4
	Theorem 5.4.1

	Benchmarks
	Prioritised eq
	Prioritised fac
	fib(15)
	evalexp(5)
	evaltree(5)
	evalsym(5)
	set add
	all even
	exp peano
	exp binary
	higher-order binary search

	Bibliography
	Index
	Summary
	Curriculum Vitae

