

Automating Soundness Proofs

Muck van Weerdenburg

SOS'08 July 6, 2008

/department of mathematics and computer science

Outline

Introduction The(/My) Problem Process Language Development Typical Soundness Proofs

Automation

Approach Translation to FOL Proving Proof of Concept

Future Work Universal Quantification Additional Logic Rules

The(/My) Problem

In the last 5 years I made several process languages.

Each time, the same tasks have to be done.

Some task are "essential"; require actual thinking.

But some are tedious and straightforward (boring).

Process Language Development - Syntax

For illustration we use a simple process language.

CCS without parallelism:

- deadlock 0
- action prefix a._
- alternative composition $_{-}+_{-}$

Process Language Development - SOS

$$a.p \xrightarrow{a} p$$

$$p \xrightarrow{a} p' \qquad q \xrightarrow{a} q'$$

$$p + q \xrightarrow{a} p' \qquad p + q \xrightarrow{a} q'$$

/department of mathematics and computer science

Process Language Development - Relation

We say to processes p and q are equivalent if...

...there is a relation R relating p and q...

such that if p'Rq', then

- q'Rp', and
- forall a and p'' with $p' \xrightarrow{a} p''$, there is a q'' with $q' \xrightarrow{a} q''$ and p'' Rq''

We write $p \leftrightarrow q$ iff p and q are equivalent.

Process Language Development - Equalities (Axioms)

We think we have the following equalities between processes.

 $\begin{array}{rcl} x+y & \overleftrightarrow & y+x \\ x+(y+z) & \overleftrightarrow & (x+y)+z \\ & x+x & \overleftrightarrow & x \\ & x+0 & \leftrightarrow & x \end{array}$

Typical Soundness Proofs - Relation (revisited)

We say to processes p and q are equivalent if...

...there is a relation R relating p and q...

such that if p' R q', then

- q' R p', and
- forall a and p'' with $p' \xrightarrow{a} p''$, there is a q'' with $q' \xrightarrow{a} q''$ and p'' R q''

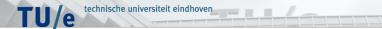
We write $p \leftrightarrow q$ iff p and q are equivalent.

A soundness proof typically follows the following lines.

We first define a relation that should be the witness of the equality.

For $x + 0 \leftrightarrow x$ this could be:

 $R = \{ \langle \boldsymbol{p} + \boldsymbol{0}, \boldsymbol{p} \rangle, \langle \boldsymbol{p}, \boldsymbol{p} + \boldsymbol{0} \rangle, \langle \boldsymbol{p}, \boldsymbol{p} \rangle : \text{ true} \}$



Assume p and q with p R q.

This means there is a r such that:

- p = r + 0 and q = r, or
- p = r and q = r + 0, or
- p = r and q = r

Let us consider the first case.

We have p = r + 0 and q = r.

Second transfer condition says:

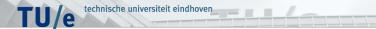
Assume *a* and *p*' such that $p \xrightarrow{a} p'$.

This means:

•
$$r \xrightarrow{a} p'$$
, or

•
$$0 \xrightarrow{a} p'$$

Again, let us consider the first case.



We have p = r + 0, q = r and $r \xrightarrow{a} p'$.

We must find a q' such that $q \xrightarrow{a} q'$ and p' R q'.

As q = r and we have $r \xrightarrow{a} p'$, take q' = p'.

Etc...

These proofs (almost) always follow these lines:

- Deconstruct assumptions.
- Construct desired conclusions.

Very little intelligence is required in this process.

We (have to) do these proofs again and again for each new theory/language.

TU/e

ntroduction The(/My) Problem Process Language Development Typical Soundness Proofs

technische universiteit eindhoven

Automation Approach Translation to FOL Proving Proof of Concept

Future Work Universal Quantification Additional Logic Rules

Approach of Automation

We want to translate the problem to first-order logic...

...and use a prover to solve it.

(All automatically.)

Translation to FOL - SOS

We assume all rules have a conclusion of the form P(f(...),...).

Then we simply interpret a rule $\frac{P_1, \ldots, P_N}{Q}$ as

$$\forall_{x_1,x_2,\ldots}(P_1\wedge\ldots\wedge P_n\Rightarrow Q)$$

(This requires a complete/well-defined specification.)

Then we can easily define, for each P and f, a definition for $P(f(\ldots), \ldots)$.

Translation to FOL - SOS (revisited)

$$a.p \xrightarrow{a} p$$

$$\frac{p \stackrel{a}{\longrightarrow} p'}{p + q \stackrel{a}{\longrightarrow} p'} \qquad \frac{q \stackrel{a}{\longrightarrow} q'}{p + q \stackrel{a}{\longrightarrow} q'}$$

/department of mathematics and computer science

Translation to FOL - SOS

In our example this means we get the following:

 $\begin{array}{rcl} 0 \stackrel{a}{\longrightarrow} x & \stackrel{def}{=} & \text{false} \\ a.x \stackrel{a}{\longrightarrow} y & \stackrel{def}{=} & \exists_p (x = p \ \land \ y = p \ \land \ \text{true}) \\ x + y \stackrel{a}{\longrightarrow} z & \stackrel{def}{=} & \exists_{p,p',q} (x = p \ \land \ y = q \ \land \ z = p' \ \land \ p \stackrel{a}{\longrightarrow} p') \\ & \lor & \exists_{p,q,q'} (x = p \ \land \ y = q \ \land \ z = q' \ \land \ q \stackrel{a}{\longrightarrow} q') \end{array}$

Translation to FOL - Relation

To formulate the relation we get the following:

$$\text{is_rel}(R) \stackrel{def}{=} \forall_{p,q} (R(p,q) \Rightarrow \\ R(q,p) \land \\ \forall a, p'(p \xrightarrow{a} p' \Rightarrow \exists q'(q \xrightarrow{a} q' \land R(p',q'))))$$

(Note this is not quite first-order, but can easily be formulated as such.)

Translation to FOL - Equalities

An equality *e* such as $x + 0 \leftrightarrow x$ is represented by:

$$\begin{array}{rcl} R_e(x,y) & \stackrel{def}{=} & \exists z(x=z+0 \land y=z) \\ & \lor & \exists z(x=z \land y=z+0) \\ & \lor & \exists z(x=z \land y=z) \end{array}$$

(This represents $\{\langle p+0, p \rangle, \langle p, p+0 \rangle, \langle p, p \rangle : \text{true}\}.$)

To prove the soundness of $x + 0 \leftrightarrow x$...

...we take all previous definition as axioms in a logic system...

..and construct a proof for $is_r el(R_e)$.

We use a standard sequent logic with the rule.

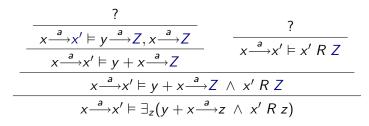
Except that we replace

 $\frac{\Gamma \vDash \varphi[t/x], \Delta}{\Gamma \vDash \exists_x(\varphi), \Delta} \quad \text{with} \quad \frac{\Gamma \vDash \varphi[X/x], \Delta}{\Gamma \vDash \exists_x(\varphi), \Delta}$

where X is a meta-variable.

This allows delay of specific instantiation.

In proving $x + y \leftrightarrow y + x$:



In proving $x + y \leftrightarrow y + x$:

Proof of Concept

With this method we proved soundess of axiomatisations of

- CCS (without parallelism),
- BPA $_{\delta\epsilon}$ (has termination predicate),
- BPA* (iteration),
- ACP (parallelism).

Prototype at http://www.win.tue.nl/~mweerden/soundness/.

Outline

ntroduction The(/My) Problem Process Language Development Typical Soundness Proofs

Automation Approach Translation to FOL Proving Proof of Concept

Future Work Universal Quantification Additional Logic Rules

Universal Quantification

Universal quantification in assumptions:

 $\frac{\Gamma, \forall_x(\varphi), \varphi[t/x] \vDash \Delta}{\Gamma, \forall_x(\varphi) \vDash \Delta}$

You have to be smart about the values you want to instantiate.

With this: proofs for symmetry, transitivity and congruence?

Additional Logic Rules

Discrete-time languages (with time-transition \mapsto):

 $\frac{x \mapsto x', y \mapsto y'}{x + y \mapsto x' + y'}$

Proving x + x = x results in:

$$x \mapsto x', x \mapsto y' \vDash x \mapsto Z \land x' + y' R Z$$

Here you could use a rule like $\frac{y = z}{x \mapsto y, x \mapsto z}$.

Additional Logic Rules

Rules for substitution.

Summation:

$$\frac{p[t/x] \xrightarrow{a} p'}{\sum_{x} p \xrightarrow{a} p'}$$

Recursion:

 $\frac{p[\mu X.p/X] \xrightarrow{a} p'}{\mu X.p \xrightarrow{a} p'}$

Extensions

Proof generation.

Automatic relation expansion.

Induction.

. . .

/department of mathematics and computer science

Thank you for your attention!