
Automating Soundness Proofs

Muck van Weerdenburg

SOS’08 July 6, 2008



Outline

Introduction
The(/My) Problem
Process Language Development
Typical Soundness Proofs

Automation
Approach
Translation to FOL
Proving
Proof of Concept

Future Work
Universal Quantification
Additional Logic Rules



The(/My) Problem

In the last 5 years I made several process languages.

Each time, the same tasks have to be done.

Some task are “essential”; require actual thinking.

But some are tedious and straightforward (boring).



Process Language Development - Syntax

For illustration we use a simple process language.

CCS without parallelism:

• deadlock 0

• action prefix a.

• alternative composition +



Process Language Development - SOS

a.p
a−→p

p
a−→p′

p + q
a−→p′

q
a−→q′

p + q
a−→q′



Process Language Development - Relation

We say to processes p and q are equivalent if...

...there is a relation R relating p and q...

such that if p′Rq′, then

• q′Rp′, and

• forall a and p′′ with p′
a−→p′′, there is a q′′ with q′

a−→q′′ and
p′′Rq′′

We write p ↔ q iff p and q are equivalent.



Process Language Development - Equalities (Axioms)

We think we have the following equalities between processes.

x + y ↔ y + x

x + (y + z) ↔ (x + y) + z

x + x ↔ x

x + 0 ↔ x



Typical Soundness Proofs - Relation (revisited)

We say to processes p and q are equivalent if...

...there is a relation R relating p and q...

such that if p′ R q′, then

• q′ R p′, and

• forall a and p′′ with p′
a−→p′′, there is a q′′ with q′

a−→q′′ and
p′′ R q′′

We write p ↔ q iff p and q are equivalent.



Typical Soundness Proofs

A soundness proof typically follows the following lines.

We first define a relation that should be the witness of the equality.

For x + 0↔ x this could be:

R = {〈p + 0, p〉, 〈p, p + 0〉, 〈p, p〉 : true}



Typical Soundness Proofs

Assume p and q with p R q.

This means there is a r such that:

• p = r + 0 and q = r , or

• p = r and q = r + 0, or

• p = r and q = r

Let us consider the first case.



Typical Soundness Proofs

We have p = r + 0 and q = r .

Second transfer condition says:

Assume a and p′ such that p
a−→p′.

This means:

• r
a−→p′, or

• 0
a−→p′

Again, let us consider the first case.



Typical Soundness Proofs

We have p = r + 0, q = r and r
a−→p′.

We must find a q′ such that q
a−→q′ and p′ R q′.

As q = r and we have r
a−→p′, take q′ = p′.

Etc...



Typical Soundness Proofs

These proofs (almost) always follow these lines:

• Deconstruct assumptions.

• Construct desired conclusions.

Very little intelligence is required in this process.

We (have to) do these proofs again and again for each new
theory/language.



Outline

Introduction
The(/My) Problem
Process Language Development
Typical Soundness Proofs

Automation
Approach
Translation to FOL
Proving
Proof of Concept

Future Work
Universal Quantification
Additional Logic Rules



Approach of Automation

We want to translate the problem to first-order logic...

...and use a prover to solve it.

(All automatically.)



Translation to FOL - SOS

We assume all rules have a conclusion of the form P(f (. . .), . . .).

Then we simply interpret a rule
P1, . . . ,PN

Q
as

∀x1,x2,...(P1 ∧ . . . ∧ Pn ⇒ Q)

(This requires a complete/well-defined specification.)

Then we can easily define, for each P and f , a definition for
P(f (. . .), . . .).



Translation to FOL - SOS (revisited)

a.p
a−→p

p
a−→p′

p + q
a−→p′

q
a−→q′

p + q
a−→q′



Translation to FOL - SOS

In our example this means we get the following:

0
a−→x

def
= false

a.x
a−→y

def
= ∃p(x = p ∧ y = p ∧ true)

x + y
a−→z

def
= ∃p,p′,q(x = p ∧ y = q ∧ z = p′ ∧ p

a−→p′)

∨ ∃p,q,q′(x = p ∧ y = q ∧ z = q′ ∧ q
a−→q′)



Translation to FOL - Relation

To formulate the relation we get the following:

is rel(R)
def
= ∀p,q(R(p, q)⇒

R(q, p) ∧
∀a, p′(p a−→p′ ⇒ ∃q′(q a−→q′ ∧ R(p′, q′))))

(Note this is not quite first-order, but can easily be formulated as
such.)



Translation to FOL - Equalities

An equality e such as x + 0↔ x is represented by:

Re(x , y)
def
= ∃z(x = z + 0 ∧ y = z)
∨ ∃z(x = z ∧ y = z + 0)
∨ ∃z(x = z ∧ y = z)

(This represents {〈p + 0, p〉, 〈p, p + 0〉, 〈p, p〉 : true}.)



Proving

To prove the soundness of x + 0↔ x ...

...we take all previous definition as axioms in a logic system...

..and construct a proof for isrel(Re).



Proving

We use a standard sequent logic with the rule.

Except that we replace

Γ � ϕ[t/x ],∆

Γ � ∃x(ϕ),∆
with

Γ � ϕ[X/x ],∆

Γ � ∃x(ϕ),∆

where X is a meta-variable.

This allows delay of specific instantiation.



Proving

In proving x + y ↔ y + x :

?

x
a−→x ′ � y

a−→Z , x
a−→Z

x
a−→x ′ � y + x

a−→Z

?

x
a−→x ′ � x ′ R Z

x
a−→x ′ � y + x

a−→Z ∧ x ′ R Z

x
a−→x ′ � ∃z(y + x

a−→z ∧ x ′ R z)



Proving

In proving x + y ↔ y + x :

x
a−→x ′ � y

a−→x ′, x
a−→x ′

x
a−→x ′ � y + x

a−→x ′

. . .

x
a−→x ′ � x ′ R x ′

x
a−→x ′ � y + x

a−→x ′ ∧ x ′ R x ′

x
a−→x ′ � ∃z(y + x

a−→z ∧ x ′ R z)



Proof of Concept

With this method we proved soundess of axiomatisations of

• CCS (without parallelism),

• BPAδε (has termination predicate),

• BPA∗ (iteration),

• ACP (parallelism).

Prototype at http://www.win.tue.nl/˜mweerden/soundness/.



Outline

Introduction
The(/My) Problem
Process Language Development
Typical Soundness Proofs

Automation
Approach
Translation to FOL
Proving
Proof of Concept

Future Work
Universal Quantification
Additional Logic Rules



Universal Quantification

Universal quantification in assumptions:

Γ,∀x(ϕ), ϕ[t/x ] � ∆

Γ,∀x(ϕ) � ∆

You have to be smart about the values you want to instantiate.

With this: proofs for symmetry, transitivity and congruence?



Additional Logic Rules

Discrete-time languages (with time-transition 7→):

x 7→ x ′, y 7→ y ′

x + y 7→ x ′ + y ′

Proving x + x = x results in:

x 7→ x ′, x 7→ y ′ � x 7→ Z ∧ x ′ + y ′ R Z

Here you could use a rule like
y = z

x 7→ y , x 7→ z
.



Additional Logic Rules

Rules for substitution.

Summation:
p[t/x ]

a−→p′

Σxp
a−→p′

Recursion:
p[µX .p/X ]

a−→p′

µX .p
a−→p′



Extensions

Proof generation.

Automatic relation expansion.

Induction.

...



Thank you for your attention!


	Outline
	Introduction
	The(/My) Problem
	Process Language Development
	Typical Soundness Proofs

	Automation
	Approach
	Translation to FOL
	Proving
	Proof of Concept

	Future Work
	Universal Quantification
	Additional Logic Rules


