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The(/My) Problem

In the last 5 years I made several process languages.

Each time, the same tasks have to be done.

Some task are “essential”; require actual thinking.

But some are tedious and straightforward (boring).



Process Language Development - Syntax

For illustration we use a simple process language.

CCS without parallelism:

• deadlock 0

• action prefix a.

• alternative composition +



Process Language Development - SOS

a.p
a−→p

p
a−→p′

p + q
a−→p′

q
a−→q′

p + q
a−→q′



Process Language Development - Relation

We say to processes p and q are equivalent if...

...there is a relation R relating p and q...

such that if p′Rq′, then

• q′Rp′, and

• forall a and p′′ with p′
a−→p′′, there is a q′′ with q′

a−→q′′ and
p′′Rq′′

We write p ↔ q iff p and q are equivalent.



Process Language Development - Equalities (Axioms)

We think we have the following equalities between processes.

x + y ↔ y + x

x + (y + z) ↔ (x + y) + z

x + x ↔ x

x + 0 ↔ x



Typical Soundness Proofs - Relation (revisited)

We say to processes p and q are equivalent if...

...there is a relation R relating p and q...

such that if p′ R q′, then

• q′ R p′, and

• forall a and p′′ with p′
a−→p′′, there is a q′′ with q′

a−→q′′ and
p′′ R q′′

We write p ↔ q iff p and q are equivalent.



Typical Soundness Proofs

A soundness proof typically follows the following lines.

We first define a relation that should be the witness of the equality.

For x + 0↔ x this could be:

R = {〈p + 0, p〉, 〈p, p + 0〉, 〈p, p〉 : true}



Typical Soundness Proofs

Assume p and q with p R q.

This means there is a r such that:

• p = r + 0 and q = r , or

• p = r and q = r + 0, or

• p = r and q = r

Let us consider the first case.



Typical Soundness Proofs

We have p = r + 0 and q = r .

Second transfer condition says:

Assume a and p′ such that p
a−→p′.

This means:

• r
a−→p′, or

• 0
a−→p′

Again, let us consider the first case.



Typical Soundness Proofs

We have p = r + 0, q = r and r
a−→p′.

We must find a q′ such that q
a−→q′ and p′ R q′.

As q = r and we have r
a−→p′, take q′ = p′.

Etc...



Typical Soundness Proofs

These proofs (almost) always follow these lines:

• Deconstruct assumptions.

• Construct desired conclusions.

Very little intelligence is required in this process.

We (have to) do these proofs again and again for each new
theory/language.
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Approach of Automation

We want to translate the problem to first-order logic...

...and use a prover to solve it.

(All automatically.)



Translation to FOL - SOS

We assume all rules have a conclusion of the form P(f (. . .), . . .).

Then we simply interpret a rule
P1, . . . ,PN

Q
as

∀x1,x2,...(P1 ∧ . . . ∧ Pn ⇒ Q)

(This requires a complete/well-defined specification.)

Then we can easily define, for each P and f , a definition for
P(f (. . .), . . .).



Translation to FOL - SOS (revisited)

a.p
a−→p

p
a−→p′

p + q
a−→p′

q
a−→q′

p + q
a−→q′



Translation to FOL - SOS

In our example this means we get the following:

0
a−→x

def
= false

a.x
a−→y

def
= ∃p(x = p ∧ y = p ∧ true)

x + y
a−→z

def
= ∃p,p′,q(x = p ∧ y = q ∧ z = p′ ∧ p

a−→p′)

∨ ∃p,q,q′(x = p ∧ y = q ∧ z = q′ ∧ q
a−→q′)



Translation to FOL - Relation

To formulate the relation we get the following:

is rel(R)
def
= ∀p,q(R(p, q)⇒

R(q, p) ∧
∀a, p′(p a−→p′ ⇒ ∃q′(q a−→q′ ∧ R(p′, q′))))

(Note this is not quite first-order, but can easily be formulated as
such.)



Translation to FOL - Equalities

An equality e such as x + 0↔ x is represented by:

Re(x , y)
def
= ∃z(x = z + 0 ∧ y = z)
∨ ∃z(x = z ∧ y = z + 0)
∨ ∃z(x = z ∧ y = z)

(This represents {〈p + 0, p〉, 〈p, p + 0〉, 〈p, p〉 : true}.)



Proving

To prove the soundness of x + 0↔ x ...

...we take all previous definition as axioms in a logic system...

..and construct a proof for isrel(Re).



Proving

We use a standard sequent logic with the rule.

Except that we replace

Γ � ϕ[t/x ],∆

Γ � ∃x(ϕ),∆
with

Γ � ϕ[X/x ],∆

Γ � ∃x(ϕ),∆

where X is a meta-variable.

This allows delay of specific instantiation.



Proving

In proving x + y ↔ y + x :

?

x
a−→x ′ � y

a−→Z , x
a−→Z

x
a−→x ′ � y + x

a−→Z

?

x
a−→x ′ � x ′ R Z

x
a−→x ′ � y + x

a−→Z ∧ x ′ R Z

x
a−→x ′ � ∃z(y + x

a−→z ∧ x ′ R z)



Proving

In proving x + y ↔ y + x :

x
a−→x ′ � y

a−→x ′, x
a−→x ′

x
a−→x ′ � y + x

a−→x ′

. . .

x
a−→x ′ � x ′ R x ′

x
a−→x ′ � y + x

a−→x ′ ∧ x ′ R x ′

x
a−→x ′ � ∃z(y + x

a−→z ∧ x ′ R z)



Proof of Concept

With this method we proved soundess of axiomatisations of

• CCS (without parallelism),

• BPAδε (has termination predicate),

• BPA∗ (iteration),

• ACP (parallelism).

Prototype at http://www.win.tue.nl/˜mweerden/soundness/.



Outline

Introduction
The(/My) Problem
Process Language Development
Typical Soundness Proofs

Automation
Approach
Translation to FOL
Proving
Proof of Concept

Future Work
Universal Quantification
Additional Logic Rules



Universal Quantification

Universal quantification in assumptions:

Γ,∀x(ϕ), ϕ[t/x ] � ∆

Γ,∀x(ϕ) � ∆

You have to be smart about the values you want to instantiate.

With this: proofs for symmetry, transitivity and congruence?



Additional Logic Rules

Discrete-time languages (with time-transition 7→):

x 7→ x ′, y 7→ y ′

x + y 7→ x ′ + y ′

Proving x + x = x results in:

x 7→ x ′, x 7→ y ′ � x 7→ Z ∧ x ′ + y ′ R Z

Here you could use a rule like
y = z

x 7→ y , x 7→ z
.



Additional Logic Rules

Rules for substitution.

Summation:
p[t/x ]

a−→p′

Σxp
a−→p′

Recursion:
p[µX .p/X ]

a−→p′

µX .p
a−→p′



Extensions

Proof generation.

Automatic relation expansion.

Induction.

...



Thank you for your attention!
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