
Automating Soundness Proofs

Muck van Weerdenburg1

Department of Mathematics and Computer Science
Eindhoven University of Technology (TU/e)

Eindhoven, The Netherlands

Abstract

When developing a new language with semantics described by Structural Operational Semantics (SOS), one
often wants an axiomatisation of this language (w.r.t. to some equivalence) as well. We describe a method
for automating the straightforward soundness proofs for the axioms of such an axiomatisation.

Keywords: structural operational semantics, axiomatisation, soundness, theorem proving

1 Introduction

In the field of process theory new theories are constantly being constructed and
each time similar activities occur. The development of a process language typically
starts with the definition of the syntax and operational semantics, for instance by
means of Structural Operation Semantics (SOS) [17]. Next an equivalence, such as
bisimilarity [15,10], is defined on processes. Often an axiomatision for the language
is also given. At the very least, such an axiomatisation must be proven sound.

Most of the axioms of an axiomatisation are usually very simple. Typical ex-
amples are associativity, commutativity and distribution axioms. The soundness
proofs of these axioms are often also very straightforward but quite labour inten-
sive. For this reason it is not uncommon to see claims that such properties hold
without proofs. Another approach that is sometimes taken is to simple define oper-
ators to have properties such as associativity. In [12] it is shown that doing so can
have unexpected and undesired consequences.

As the proofs are indeed very straightforward, an obvious question is whether
we can automate such proofs. We are not aware of any attempts that try to do this,
however. The closest techniques that come to mind are those of [1,19,20,3] where a

1 E-Mail: M.J.van.Weerdenburg@tue.nl

Electronic Notes in Theoretical Computer Science 229 (2009) 107–118

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.076

mailto:M.J.van.Weerdenburg@tue.nl
http://www.elsevier.com/locate/entcs

sound and complete axiomatisation is constructed from the operational semantics.
The down side to these approaches is that they require certain operators and/or
the semantics to be in a restricted format.

In this paper we describe a method that we think is capable of proving the most
straightforward soundness claims. We translate the semantics and equivalence to
axioms in a first-order deduction system and for each axiom that needs to be proven
sound we show that it satisfies the equivalence by constructing a deductive proof.
We give a proof of concept that (partially) implements our method and gives a
more clear feeling of what is and what is not possible with this technique. We
expect that our method can easily be adapted for proving symmetry, transitivity
and congruence of equivalences w.r.t. to the semantics.

2 Soundness Proofs

We first look at the typical structure of a soundness proof. For this we consider CCS
[10] without parallelism, which is defined by the following operational semantics.

a.p
a→ p

p
a→ p′

p + q
a→ p′

q
a→ q′

p + q
a→ q′

Bisimilarity on this language is defined as follows. Let R be a symmetric relation
on processes. We call R a bisimulation relation if, and only if, for all processes p

and q with p R q we have that if p
a→ p′ for some a and p′, there is a q′ such that

q
a→ q′ and p′ R q′. The latter requirement is referred to as the transfer condition.

Two processes p and q are bisimilar, notation p ↔ q, if, and only if, there is a
bisimulation relation R relating p and q.

With bisimilarity we consider the following (complete) axiomatisation.

x + y = y + x

x + (y + z) = (x + y) + z

x + x = x

x + 0 = x

Let us prove the second axiom (i.e. x + (y + z) = (x + y) + z). This means we
need to show that for all processes p, q and r there is a bisimulation relation R

relating p + (q + r) and (p + q) + r. The relation that is taken in typical soundness
proofs is the smallest relation containing the pairs related by the axiom (both ways)
and any other required pairs. Often this means that also all pairs (p, p) (for all p)
are included. More complex axioms might also need other axioms (e.g. for commu-
tativity of the parallel composition one needs commutativity of the communication
merge).

Let R = {(p, p), (p + (q + r), (p + q) + r), ((p + q) + r, p + (q + r)) :
“p, q and r are closed terms”}. We know need to show that R is a bisimulation

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118108

relation. That is, for each pair in R we must prove the transfer condition. First for
the pairs (p, p):

• Assume that p
a→ p′ for some a and p′. We then trivially have a q′ (viz. p′) such

that p
a→ p′ and (p′, q′) ∈ R.

Next we consider the pairs (p + (q + r), (p + q) + r), for all p, q and r.

• Assume that p + (q + r) a→ p′ for some a and p′. For the rules of the operational
semantics we know this means that either p

a→ p′ or q + r
a→ p′.

· If p
a→ p′, then the operational semantics gives us that p + q

a→ p′ and (p + q) +
r

a→ p′. As (p′, p′) ∈ R, we have satisfied the transfer condition for this case.
· If q + r

a→ p′, then the same rules give us that q
a→ p′ or r

a→ p′.
If q

a→ p′, then the operational semantics gives us that p + q
a→ p′ and (p + q) +

r
a→ p′. As (p′, p′) ∈ R, we have satisfied the transfer condition for this case.

If r
a→ p′, then the operational semantics gives us that (p + q) + r

a→ p′. As
(p′, p′) ∈ R, we have satisfied the transfer condition for this case.

Finally we consider the pairs ((p + q) + r, p + (q + r)), for all p, q and r.

• Assume that (p + q) + r
a→ p′ for some a and p′. For the rules of the operational

semantics we know this means that either p + q
a→ p′ or r

a→ p′.
· If p + q

a→ p′, then the same rules give us that p
a→ p′ or q

a→ p′.
If p

a→ p′, then the operational semantics gives us that p + (q + r) a→ p′. As
(p′, p′) ∈ R, we have satisfied the transfer condition for this case.
If q

a→ p′, then the operational semantics gives us that q + r
a→ p′ and p + (q +

r) a→ p′. As (p′, p′) ∈ R, we have satisfied the transfer condition for this case.
· If r

a→ p′, then the operational semantics gives us that q + r
a→ p′ and p + (q +

r) a→ p′. As (p′, p′) ∈ R, we have satisfied the transfer condition for this case.

This concludes the soundness proof for the second axiom. It is clear that all the
cases are very much alike and quite straightforward.

The way the above proof goes is very typical. First one takes the assumption
(e.g. p + (q + r) a→ p′) and uses the operational semantics to split this in “smaller”
statements (i.e. p

a→ p′, q
a→ p′ and r

a→ p′). Once we cannot simplify any further
(without case distinction on variables), the obtained statements are combined to
get the desired result.

Do note that this last step is actually written down in the reverse order. One
does not randomly combine the basic statements obtained from the assumptions in
the hope the desired result will appear. What happens – consciously or not – is that
one starts at the desired conclusion and simplifies this (much like the assumptions)
to the various sets of basic statements that lead to this conclusion. After that it
is merely checking whether one of these sets is included in the set of statements
derived from the assumptions.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118 109

3 Automation

To automate soundness proofs we first must decide on a more formal framework in
which we write our proofs. We assume sets of variables V, function symbols F

and predicates P. Combining elements from V and F in the usual manner gives
us the set of terms T. Note that we assume that terms are typed, even though we
do not explicitly use it here. A predicate from P applied to a number of terms is
called an atom. We use a typical first-order logic. The base elements are atoms
and we have the typical operators ¬, ∨, ∧, ⇒, ∀x and ∃x. We write FV(S) for the
free (i.e. unbound) variables in the formulas in S.

We consider an SOS rule to be a tuple 〈ϕ, a〉, where a is an atom and ϕ is a
conjunction of atoms and formulas of the form ∀x(¬b) (with x a variable and b an
atom). We assume that each predicate takes at least one argument and that the
first argument of such a predicate in the conclusion of a SOS rule is of the form
f(t1, . . . , tn). We use the three-valued-stable-model semantics of SOSs (conform
[5]), but assume that the set of SOS rules defining the operation semantics has a
two-valued model (i.e. the set of “unknowns” is empty). We know of no applica-
tion where this is not desired and it is typically straightforward to prove using a
stratification [5].

Note that for traditional Transition-System Specifications (TSSs) [9] the premises
are defined as sets of atoms and negations of atoms. For practical cases these sets
are easily represented by a formula using conjunctions (and universal quantifications
over negations of atoms). When this is not the case one might desire the infinitary
operators

∨
and

∧
, but we do not see any reasonable way of implementing this at

this moment.

Our method of automation works by formulating soundness claims as formulas
and proving these in a sequent-style calculus [8,18]. Such calculi have proven their
worth in theorem provers as Coq [4], PVS [14] and Isabelle [16]. In order to be able
to use this method we need to formulate the operational semantics, the (equivalence)
relation and the (relations representing the) axioms as axioms in the set Ax. We
do this as follows.

(i) If R is the set of SOS rules of the operational semantics, we add the following
axioms to Ax for all P , f and ti:

P (f(t1, . . . , tn), tn+1, . . . , tm) .=
∨

〈ϕ, a〉 ∈ R, {x1, . . . , xk} = FV({ϕ, a}),
a = P (f(t′1, . . . , t′n), t′n+1, . . . , t

′
m)

(∃x1,...,xk
(ϕ ∧ ∧

1≤i≤m ti = t′i))

(ii) We add a rule isrel(R) = ϕ to Ax for each R, where ϕ is the formula expressing
that R satisfies relation rel. For example, is↔(R) is true if, and only if, R is
symmetric and satisfies the transfer condition.

(iii) For each relation R representing an axiom we add a rules R(t, u) = ϕ where

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118110

ϕ expresses precisely when t and u are related by R. More on how to obtain
such a relation later.

Note that the above typically results in an infinite set Ax. This is not a problem
as an implementation does not explicitly need the set Ax; the elements of this set
can be deduced from the finite representation of the semantics and axioms with the
rules above.

To illustrate this strategy we again consider CCS without parallelism. For the
operational semantics we get the following statements in Ax (per the transformation
described above and some simplifications).

0 a→ p
.= false for all a and p

act(a) b→ p
.= a = b ∧ p = 0 for all a, b and p

p + q
a→ p′ .= p

a→ p′ ∨ q
a→ p′ for all p, q, a and p′

We write the bisimulation relation characterisation as follows. We write is↔ for
the predicate that indicates whether a set is a bisimulation relation.

is↔(R) .= ∀p,q(R(p, q) ⇒ R(q, p) ∧ ∀a,p′(p
a→ p′ ⇒ ∃q′(q

a→ q′ ∧ R(p′, q′))))

The bisimulation relation assoc+ for axiom x + (y + z) = (x + y) + z is defined
by the following.

assoc+(p, q) .= p = q ∨
∃p′,q′,r′(p = p′ + (q′ + r′) ∧ q = (p′ + q′) + r′) ∨
∃p′,q′,r′(p = (p′ + q′) + r′ ∧ q = p′ + (q′ + r′))

Such a relation typically consists of the pairs related by the axiom itself but it also
contains additional pairs in order to prove the soundness. For example, for most
equivalences and axioms one needs the relation to be reflexive (see the proof in
Sect. 2). In some occasions one needs additional non-trivial pairs in order to prove
the soundness of an axioms. In that case it would be useful to have some extra logic
in the implementation of our method to detect when the proof needs certain pairs
in the relation that are not in it (similar to what is done in [6]). By either reporting
this or even adding such pairs on the fly, the user can be relieved of the burden to
supply these relations in most cases.

The deduction rules of the sequent calculus that we use here are as follows. Note
that we only use rules that in some way reduce the “complexity” of statements.
This allows us to apply any of the rules without risking infinite behaviour. The
rules (∃E), (axI) and (axE) are discussed below. We write Γ, ϕ and ϕ, Δ for Γ∪{ϕ}
and {ϕ} ∪ Δ, respectively.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118 111

Γ true, Δ
(trueI)

Γ, false Δ
(falseE)

Γ, ϕ Δ

Γ ¬ϕ, Δ
(¬I)

Γ ϕ, Δ

Γ,¬ϕ Δ
(¬E)

Γ ϕ, ψ,Δ

Γ ϕ ∨ ψ, Δ
(∨I)

Γ, ϕ Δ Γ, ψ Δ

Γ, ϕ ∨ ψ Δ
(∨E)

Γ ϕ, Δ Γ ψ, Δ

Γ ϕ ∧ ψ, Δ
(∧I)

Γ, ϕ, ψ Δ

Γ, ϕ ∧ ψ Δ
(∧E)

Γ, ϕ ψ, Δ

Γ ϕ ⇒ ψ, Δ
(⇒I)

Γ ϕ,Δ Γ, ψ Δ

Γ, ϕ ⇒ ψ Δ
(⇒E)

Γ ϕ[X/x],Δ X �∈ FV(Γ ∪ Δ)

Γ ∃x(ϕ),Δ
(∃I)

Γ, ϕ Δ x �∈ FV(Γ ∪ Δ)

Γ,∃x(ϕ) Δ
(∃E)

Γ ϕ, Δ x �∈ FV(Γ ∪ Δ)

Γ ∀x(ϕ),Δ
(∀I)

Γ C[u], Δ t
.= u ∈ Ax

Γ C[t],Δ
(axI)

Γ, C[u] Δ t
.= u ∈ Ax

Γ, C[t] Δ
(axE)

Γ t1 = u1 ∧ . . . ∧ tn = un,Δ

Γ f(t1, . . . , tn) = f(u1, . . . , un),Δ
(eqI)

Γ, t1 = u1, . . . , tn = un Δ

Γ, f(t1, . . . , tn) = f(u1, . . . , un) Δ
(eqE1)

Γ t = t, Δ
(reflexivity)

f �= g

Γ, f(t1, . . . , tn) = g(u1, . . . , um) Δ
(eqE2)

Γ[u/x] Δ[u/x]

Γ, x = u Δ
(substL)

Γ[u/x] Δ[u/x]

Γ, u = x Δ
(substR)

Γ, ϕ ϕ,Δ
(assumption)

The following rules deserve special mention:

• Rule (∃E) is special because instead of having the premise ϕ[t/x] as is common
in such logics we introduce a meta variable X. The reason for this is that we do
not wish to pick a specific t at the moment we apply the rule as we do not know

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118112

which t will be useful later in the proof. Instead we postpone this decision until
we find a value that is suited. For example, from P (t) � ∃x(ϕ ⇒ P (x)) we get
P (t) � ϕ ⇒ P (X) with rule (∃E) and P (t), ϕ P (X). Only at this point we find
that we can only apply (assumption) if X = t. Note that this is still no guarantee
that the right choice is made, but at least we can base our choice in a more direct
way. Also note that there is not explicit rule to instantiate meta-variables as this
is done on the meta level.

• Rules (axI) and (axE) assume a set of axioms Ax of the form ϕ
.= ψ. In this set

we store the facts about our semantics. More on this later. Note that we typically
do not accept axioms that specify recursive relations (e.g. P (t) .= Q(t)∧P (f(t)))
as this can result in infinite application of these rules.

Note that the only rule that is really missing here is the elimination rule for
the ∀. The reason for this is that, similar to (∃E), one does not know beforehand
which values to instantiate the bound variable with. The solution of introducing
a meta-variable does not suffice here as one might need multiple instantiations for
one proof.

The strategy we use for proving is to apply any applicable rule with the restric-
tion that the rule (∃I) can only be applied when no other rule can. The reason for
the restriction is that the variables that can be used when replacing a meta-variable
with a (more) concrete value are limited to the free variables in the sequent where
the meta-variable was introduced. To maximise the freedom in choosing such a value
we wish to eliminate as much of existential quantifications from the assumptions
and universal quantifications from the targets as possible.

Now that we have formulated the semantics and axioms in our framework, given
our derivation rules and defined our strategy, we can prove the soundness of axiom
x + (y + z) = (x + y) + z by deriving is↔(assoc+). This is done in the following
fashion.

 is↔(assoc+)
{ (axI) }

 ∀p,q(assoc+(p, q) ⇒ ∀a,p′(p
a→ p′ ⇒ ∃q′(q

a→ q′ ∧ assoc+(p′, q′))))
{ 2×(∀I) }

 assoc+(p, q) ⇒ ∀a,p′(p
a→ p′ ⇒ ∃q′(q

a→ q′ ∧ assoc+(p′, q′)))
{ (⇒I }

assoc+(p, q) ∀a,p′(p
a→ p′ ⇒ ∃q′(q

a→ q′ ∧ assoc+(p′, q′)))
{ (axE) }

p = q ∨ ∃p′,q′,r′(p = p′ + (q′ + r′) ∧ q = (p′ + q′) + r′)∨
∃p′,q′,r′(p = (p′ + q′) + r′ ∧ q = p′ + (q′ + r′))

∀a,p′(p
a→ p′ ⇒ ∃q′(q

a→ q′ ∧ assoc+(p′, q′)))

Applying (∨E) at this point gives three proof obligations. We only consider the
second.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118 113

∃p′,q′,r′(p = p′ + (q′ + r′) ∧ q = (p′ + q′) + r′)
∀a,p′(p

a→ p′ ⇒ ∃q′(q
a→ q′ ∧ assoc+(p′, q′)))

{ 3×(∃E) }
p = p′ + (q′ + r′) ∧ q = (p′ + q′) + r′

∀a,p′(p
a→ p′ ⇒ ∃q′(q

a→ q′ ∧ assoc+(p′, q′)))
{ (∧E) }

p = p′ + (q′ + r′), q = (p′ + q′) + r′
∀a,p′(p

a→ p′ ⇒ ∃q′(q
a→ q′ ∧ assoc+(p′, q′)))

{ (subst) }
q = (p′ + q′) + r′
∀a,p′′(p′ + (q′ + r′) a→ p′ ⇒ ∃q′′(q

a→ q′ ∧ assoc+(p′′, q′′)))
{ (subst) }

 ∀a,p′′(p′ + (q′ + r′) a→ p′ ⇒ ∃q′′((p′ + q′) + r′ a→ q′ ∧ assoc+(p′′, q′′)))
{ 2×(∀I) }

 p′ + (q′ + r′) a→ p′ ⇒ ∃q′′((p′ + q′) + r′ a→ q′ ∧ assoc+(p′′, q′′))
{ (⇒I) }

p′ + (q′ + r′) a→ p′ ∃q′′((p′ + q′) + r′ a→ q′ ∧ assoc+(p′′, q′′))
{ (axE) }

p′ a→ p′ ∨ q′ + r′ a→ p′ ∃q′′((p′ + q′) + r′ a→ q′′ ∧ assoc+(p′′, q′′))

Applying (∨E) at this point gives two proof obligations. We only consider the first.

p′ a→ p′ ∃q′′((p′ + q′) + r′ a→ q′′ ∧ assoc+(p′′, q′′))
{ (∃I) }

p′ a→ p′ (p′ + q′) + r′ a→X ∧ assoc+(p′′, X)

Applying (∧I) at this point gives another two proof obligations. Again, we only
consider the first.

p′ a→ p′ (p′ + q′) + r′ a→X

{ (axI) }
p′ a→ p′ (p′ + q′) a→X ∨ r′ a→X

{ (∨I) }
p′ a→ p′ (p′ + q′) a→X, r′ a→X

{ (axI) }
p′ a→ p′ p′ a→X ∨ q′ a→X, r′ a→X

{ (∨I) }
p′ a→ p′ p′ a→X, q′ a→X, r′ a→X

{ Prepare for application of (assumption) }
p′ a→ p′ p′ a→ p′, q′ a→ p′, r′ a→ p′

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118114

Finally we apply (assumption) and we are done.

Note that our method does has not have many restrictions on the input. Of
course, the result of our method does highly depend on the complexity of the input.
Mainly the use of universal quantification in premises (e.g. to implement negative
transitions) is problematic. This might be solved by introducing special logic to
the implementation that, for example, uses pattern matching to determine which
instantiations of the variables of such a quantifier might help the proof. Specifically
recognising the simple form of ∀x(¬a), with a and atom, would extend the applica-
bility of our method to the widely used TSSs with negative premises (in the sense
of [5]).

Besides this the most significant restriction is probably the manner in which the
(equality) relation has to be represented. Weaker notions than bisimulation, such as
trace equivalence, are not easily characterised in this way. However, it is often the
case that only a few axioms really need this weaker notion to be proven sound; many
axioms hold also with respect to bisimulation. This way we can still prove most
axioms in settings with equivalences that are difficult to formalise in our framework.
The same holds for weak versions of bisimilarity that need a transitive closure of
silent steps (which typically breaks the finite boundary on required calculations).

At the moment all semantics have to be represented as SOS rules. This means
that side-conditions on rules also have to be completely formalised in SOS rules. For
this reason it would be useful to make a separation between SOS rules and auxiliary
facts. This is also required for many timed languages where one typically needs the
fact that p �−→ q and p �−→ r means that q = r (where �−→ is a time transition).

4 Proof Of Concept

As a proof of concept we have created a program 2 that reads a simple specification
file (consisting of the operational semantics, equality definition and axioms) and
translates it to a Isabelle/HOL [13] theorem file (including a “tactic” conform Sect. 3
for proving). The latter can be loaded and “run” in Isabelle/HOL which will indicate
that the axioms are sound (or not).

The reason we have chosen Isabelle/HOL is that it very closely matches our way
of reasoning as described in Sect. 3. Especially the support for using meta-variables
(or unknowns) is crucial. The main difference is that it has a single formula as
right-hand side of instead of a set of formulas Δ. This means that rule (∨I)
requires one to make a choice. Fortunately Isabelle/HOL allows one to make both
choices, resulting in multiple derivations.

For simplicity we have chosen to combine all axioms in to one equivalence rela-
tion. This avoids the situation where one has to figure out which axioms have to be
proven together. Also, we have assumed that there is only one sort. This means,
for example, that labels of transitions are the same as processes. As long as the

2 Available on request.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118 115

process semantics is non-trivial (i.e. can be used as a model for the labels as well),
this should not be a problem.

To illustrate our proof of concept we show how our running example can be
proven sound automatically. First we have a specification of the semantics and
axioms. Here => represents the meta implication (i.e. the horizontal line in an SOS
rule) and -> and && are the logical implication and conjunction, respectively. All
unbound variables are considered universally quantified.

semantics

prefix
true => trans(act(a),a,0());

alternative composition
trans(p,a,p2) => trans(alt(p,q),a,p2);
trans(q,a,q2) => trans(alt(p,q),a,q2);

relation(p,q)

symmetry
relation(q,p);

transfer condition
trans(p,a,p2) -> <exists q2: trans(q,a,q2) && relation(p2,q2)>;

axioms

alt(x,y) = alt(y,x);
alt(x,alt(y,z)) = alt(alt(x,y),z);
alt(x,x) = x;
alt(x,0()) = x;

auxiliary
x = x; # reflexivity is needed for the soundness proofs

Running the Isabelle/HOL file typically gives one of three results. If everything
is fine and soundness has been proven no errors are given. When there is a problem
Isabelle/HOL will give errors indicating the proof could not be completed or it will
keep running (possibly forever).

For the cases that we have tested so far, a successful result is given in less than
a minute. Note that it takes this long because we combine all axioms in on relation.
This results in many branches in the proof that are fully explored but do not lead
to a positive result (e.g. trying to relate x+x with (x+y)+z). With several smaller
relations the performance increases significantly (i.e. to at most a few seconds).

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118116

Table 1
Number of SOS rules, conjuncts in relation, axioms, auxiliary axioms and proven axioms per language.

Language #SOS #rel. #axs. #aux. #proven

CCS 5 2 5 1 6

BPAδε 9 4 9 1 10

BPA∗ 13 3 8 3 11

ACP 22 4 20 1 19

In Table 1 we give the results of the specifications we have tested. Here, CCS
is from [10], BPAδε is from [2], BPA∗ is from [7] and ACP is from [2]. For CCS we
have taken one instantiation of the scheme for the parallel operator axiom. The real
axiomatisation has an infinite set of axioms and cannot be represented completely in
a finite manner [11]. For BPA∗ we have added to additional axioms that are needed
to prove axioms BKS2 and BKS3. All specifications include the axiom x = x. These
additional axioms should not be needed if the implementation itself can detect the
additional requirements it needs.

The axioms of ACP that could not be proven sound are the axioms CM1 and
CM6. This is because they rely on the commutativity of the communication function
γ, which we cannot specify. Note that a minor reformulation of the relevant SOS
rules can avoid this problem.

5 Conclusion

We have described a method to automatically prove the soundness of axioms given
an operational semantics and order. We have implemented a proof of concept to
show that this method can indeed be used to prove soundness for many axioms.

It would be interesting to see if this method can also be used to solve problems
other than soundness. We believe that proofs for commutativity, transitivity and
congruence proofs should also be possible. Perhaps also settings outside of process
theory can benifit from this method.

Also interesting would be a characterisation of the semantics/axioms for which
this method is guaranteed to work.

References

[1] L. Aceto, B. Bloom, and F. W. Vaandrager. Turning SOS rules into equations. In Logic in Computer
Science, pages 113–124, 1992.

[2] J. Baeten and W. Weijland. Process Algebra, volume 18 of Cambridge Tracts in Theoretical Computer
Science. Cambrdige University Press, 1990.

[3] J. C. M. Baeten and E. P. de Vink. Axiomatizing gsos with termination. In STACS ’02: Proceedings
of the 19th Annual Symposium on Theoretical Aspects of Computer Science, pages 583–595. Springer-
Verlag, 2002.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Giménez, H. Herbelin, G. Huet, C. Muñoz,
C. Murthy, C. P. C. Parent, A. Säıbi, and B. Werner. The Coq proof assistant reference manual –
version v6.1. Technical Report 0203, INRIA, 1997.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118 117

[5] R. N. Bol and J. F. Groote. The meaning of negative premises in transition system specifications.
Journal of the ACM, 43(5):863–914, 1996.

[6] L. A. Dennis, A. Bundy, and I. Green. Using a generalisation critic to find bisimulations for coinductive
proofs. In W. McCune, editor, Automated Deduction - CADE-14, 14th International Conference on
Automated Deduction, Townsville, North Queensland, Australia, July 13-17, 1997, Proceedings, volume
1249 of Lecture Notes in Computer Science, pages 276–290. Springer, 1997.

[7] W. Fokkink. Clocks, Trees and Stars in Process Theory. PhD thesis, University of Amsterdam, 1994.

[8] G. Gentzen. Untersuchungen über das logische schließen. Mathematische Zeitschrift, 39:176–210,405–
431, 1935.

[9] J. F. Groote and F. W. Vaandrager. Structured operational semantics and bisimulation as a congruence.
Information and Computation, 100(2):202–260, 1992.

[10] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., 1982.

[11] F. Moller. The nonexistence of finite axiomatisations for ccs congruences. In Proceedings, Fifth Annual
IEEE Symposium on Logic in Computer Science, pages 142–153. IEEE Computer Society, 1990.

[12] M. Mousavi and M. Reniers. Congruence for structural congruences. In V. Sassone, editor, Proceedings
of the Eighth International Conference on Foundations of Software Science and Computation
Structures (FOSSACS’05), volume 3441 of Lecture Notes in Computer Science, pages 47–62. Springer-
Verlag.

[13] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order logic,
volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[14] S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification system. In CADE-11: Proceedings
of the 11th International Conference on Automated Deduction, pages 748–752. Springer-Verlag, 1992.

[15] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proceedings of the
fifth GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer Verlag,
1981.

[16] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[17] G. D. Plotkin. The origins of structural operational semantics. Journal of Logic and Algebraic
Programming, 60–61:3–15, 2004.

[18] M. E. Szabo. The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Company, 1969.

[19] I. Ulidowski. Axiomatisations of weak equivalences for de simone languages. In CONCUR ’95:
Proceedings of the 6th International Conference on Concurrency Theory, pages 219–233. Springer-
Verlag, 1995.

[20] I. Ulidowski. Finite axiom systems for testing preorder and de simone process languages. Theoretical
Computer Science, 239(1):97–139, 2000.

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 229 (2009) 107–118118

	Introduction
	Soundness Proofs
	Automation
	Proof Of Concept
	Conclusion
	References

