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Abstract

Generation of labelled transition systems from system specifications is highly dependent on efficient rewriting
(or related techniques). We give an account of the implementation of two rewriters of the mCRL2 toolset.
These rewriters work on open terms and use nonlinear match trees. A comparison is made with other
commonly used efficient rewriters.
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1 Introduction

Verification of systems is an important field of research that is directly linked to

the practical world. A widely used technique in this field is model checking. In

short, this often means that a Labelled Transition System (LTS) is generated from

a system specification and requirements are checked on this LTS. However, the

task of generating LTSs is very time and space demanding. In cases where LTS

generation is done with the help of rewriters, generation of typical LTSs of, say, 107

transitions requires at least a few times more than 107 calls to the rewriter. In fact,

inspection of this process in the mCRL2 toolset [9], which supports modelling and

verification of systems, shows that more than 90% of the time generating an LTS is

spent rewriting.

Apart from on-the-fly LTS reductions (e.g. modulo some equivalence), there

are two clear paths towards optimisation of LTS generation. One is to reduce the

number of times the LTS generator uses the rewriter. The other, which we consider

here, is to optimise the rewriting procedure.
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We discuss two implementations we have made for the mCRL2 toolset. One uses

innermost rewriting, the other just-in-time (JITty) rewriting [17]. The latter is a

strategy close to lazy rewriting [7] (i.e. rewriting (sub)terms only when needed). An

essential property of these rewriters is that they are compiling rewriters, meaning

that a specialised rewriter is generated for a given specification. Also, they support

rewriting of open terms (i.e. terms in which (free) variables may occur), which is

required for LTS generation.

As mCRL2 has a higher-order data language, rewriting is on higher-order (ap-

plicative) terms. Due to the fact that higher-order matching is NP-hard [3], we re-

strict the rewriting to using only simple syntactic pattern matching. This basically

boils down to rewriting applicative terms without being able to do η-reductions.

It seems that this restriction does not really impedes practical use of the rewriter

(at least not with case studies, such as [12], so far), but the precise implications

should be subject to future research. But even if our choice is too restricted for

general-purpose use, a limited, but fast rewriter is still very useful for a large set of

problems.

In order to implement efficient matching we use an adaptation of existing al-

gorithms that, instead of matching each rule separately, combine sets of rules into

a tree structure that allows for simultaneous matching of these rules. Although

implementations of such algorithms often require left-hand sides to contain each

variable at most once (i.e. the left-hand sides must be linear), our implementation

does not have this restriction.

Another important optimisation is to avoid rewriting normal forms multiple

times. Although this is fairly easy with innermost rewriting, it is much more in-

volved in the JITty rewriter.

In short, we have implemented a compiling JITty rewriter for conditional

rewrite rules on open applicative terms, making use of efficient matching of

nonlinear applicative terms. As far as we know, this is the first of its kind.

First, we introduce the part of the mCRL2 data language that is relevant for rewrit-

ing and the general architecture of our implementations in Sect. 2. In Sect. 3 we

discuss the matching algorithm used and Sect. 4 and Sect. 5 contain the descriptions

of the innermost and JITty rewriters, respectively. We conclude with an analysis

of some benchmarks in Sect. 6.

2 Preliminaries

The data language we consider here is the core data language of mCRL2. It has

only one operator, viz. application. The complete data language contains many

additional constructs for ease of modelling (including λs), but they are all expressible

in this core. From this point on, we will refer to this core simply as mCRL2.

The signature (Σ) of mCRL2 consists of a set of basic sorts SB, a set of

variables V and a set of function symbols F. Each variable or function symbol
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has a sort. Sorts s are defined as follows, where b ∈ SB and → is right-associative:

s := b | s → s

With xs ∈ V a variable of sort s and fs ∈ F a function symbol of sort s, the definition

of mCRL2 terms ts of sort s is as follows:

ts := xs | fs | ts′→s(ts′)

Typical basic sorts are the booleans B or the integers Z. Function symbols are,

for example, true or even. The sorts as subscripts of terms are usually omitted.

Given a term f(t1) . . . (tn) we call f the head symbol and ti the ith argument.

The arity of a function symbol is the maximal number of arguments it can have.

For readability we usually write terms with sequences of applications (i.e. terms

t(u)) such as ((f(w))((g(x))(y)))(z) simply as f(w, g(x, y), z).

Rewrite rules are of the form t → u if c, where terms t and u have the same

sort. Term c of sort B is the condition of a rewrite rule indicating whether or not

the rule may be applied (i.e. only when c rewrites to true). Often we omit this

condition in the case c is (syntactically) equal to true.

We write (Σ,→) for a signature Σ and set of rewrite rules → to denote a Term

Rewrite System (TRS) [6].

The architecture of the rewriters is as follows. The rewriters first preprocess the

TRS by sorting the rules by head symbol. For each head symbol f and number of

arguments n that f can have, we create a specialised function rewr f (t1 , . . . , tn) that

returns a normal form of the term f(t1) . . . (tn). The implementation of a function

rewr f takes care of the matching and applications of the rules for f by using the

match trees of Sect. 3. Also a main rewrite function is added that takes a single

term t and calls the specialised function for the head symbol of t. Depending on

the strategy it also rewrites the arguments of a function symbol, before calling its

specialised function.

For reasons of efficiency we use implicit substitutions. This means that,

instead of first substituting specific values for variables and then rewriting the term,

we apply substitution on-the-fly during rewriting (i.e. we rewrite in a context of

substitutions). This basically boils down to replacing a variable with its value as

soon as it is encountered. We can, however, also encounter terms of the form

x(t1, . . . , tn). In the case that x is not bound to a value we can just ignore it

and rewrite its arguments. Otherwise, we need to get the value of x, append the

arguments t1, . . . , tn and then rewrite that term.

For the implementation of the data terms we use the ATerm [21] library. This

automatically gives us term sharing 2 and constant time equality tests. Construction

of terms, however, is more expensive.

2 That is, equal (sub)terms are only stored once in memory. Note that changing a term in one place will
not automatically change (equal) terms in other places.
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3 Match trees

Straightforward implementations of rewrite systems will try to match the term to

be rewritten with every left-hand side of a rewrite rule separately. For example,

with the system {t1 → u1, t2 → u2} one could first try to match a term with t1 and

afterwards, if it did not match, with t2 (or vice versa).

That this is not a very efficient manner of matching can be seen clearly by looking

at rules for equality functions. Assuming a sort S with n simple constructors (i.e.

without arguments), the equality on S needs n2 rules (for every pair in S × S). 3

However, by combining these rules into a specific tree structure, we can test for a

match in the order of n. Such trees are in essence decision trees for a matching

algorithm.

The method we use for this is similar to the ones used in the ASF+SDF [19]

rewriters [20] and ELAN [22]. For rules with linear left-hand sides (i.e. left-hand

sides in which variables occur at most once), algorithms to create such trees can

be found in [14,2,16]. As we have applicative terms and allow nonlinear rewrite

rules, our approach deviates a bit. Note that in ASF+SDF nonlinear rules are also

allowed, but converted to linear rules, which requires additional side conditions.

Another related method is that of definitional trees [1]. These trees for linear rules

are specialised for a combination of lazy rewriting and narrowing [6].

Match trees determine the way a term is matched; each node of a tree represents

a basic instruction and guides the path through the tree. We start at the root

and walk up the tree, choosing branches based on the result of matching so far.

For example, one node could be to check whether a (sub)term has a specific head

symbol. Matching continues with one branch if the symbol was found and with the

other branch otherwise.

The way a term is traversed during matching is as follows. Matching a term

f(t1, . . . , tk) according to a match tree m is done in a left-most way; it starts with

argument t1 of f and executes the specific functionality of m. We do not have to

match f itself as we make a specialised rewrite function that handles only terms

starting with f (for each symbol f). At any point during execution of the matching

algorithm there is a context of values bound to variables (i.e. a context of substi-

tutions) and a stack of terms to be matched. Initially the context is empty and

the stack consists of the arguments t1 to tk of f (with t1 on top). The matching

algorithm always considers the top of the stack, which we refer to as g(u1, . . . , ul).

During matching the context will be built up, resulting in a substitution that makes

the left-hand side of the matching rule equal to f(t1, . . . , tk).

Our match trees m have the following structure, with x ∈ V, f ∈ F and term

3 Note that many languages allow for more compact notations by assuming an order on rules. Such
features are in general not safe when rewriting with open terms (e.g. rewriting f(x) in the system
f(0) → e ; f(n) → g(f(n − 1)) does not terminate). In mCRL2 we use standard conditional rewrit-
ing.
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t.

m ::= S(x,m) | M(x,m,m) | F (f,m,m) | N(m) | C(t,m,m) | R(t) | X

We give an intuition of functionality of the trees before giving the actual matching

function. A S(x,m) binds the top of the stack to variable x and continues with

tree m. Such a value bound to x is tested for equality with the top of the stack

with M(x,m, n), which continues with tree m on equality and n otherwise. With

F (f,m, n) matching continues with u1, . . . , ul on top of the stack and tree m if

f is equal to g. If not, tree n is used without changing the stack. Node N(m)

removes the top of the stack and continues with m. A condition b can be checked

with C(b,m, n). A successful match is indicated by R(t), where t is the result of

applying a matching rule. Unsuccessful matches occur with X and when the stack

is empty (i.e. there are too few arguments).

Let σ be a context, σ[x �→ t] the context σ in which term t is bound to variable

x and σ(t) a term t in which every variable is replaced by the value bound to it

in σ. Also let [] denote the empty stack and t � s term t on top of stack s. The

definition of the matching function μ, which returns either X (no match) or R(t)

(match with result t), is as follows:

μ(m, σ, []) = X

μ(S(x,m), σ, t � s) = μ(m,σ[x �→ t], t � s)

μ(M(x,m, n), σ, t � s) = μ(m,σ, t � s) if σ(x) = t

μ(M(x,m, n), σ, t � s) = μ(n, σ, t � s) if σ(x) �= t

μ(F (f,m, n), σ, g(u1, . . . , un) � s) = μ(m,σ, u1 � . . . � un � s) if f = g

μ(F (f,m, n), σ, g(u1, . . . , un) � s) = μ(n, σ, g(u1, . . . , un) � s) if f �= g

μ(N(m), σ, t � s) = μ(m,σ, s)

μ(C(b,m, n), σ, t � s) = μ(m,σ, t � s) if σ(b)

μ(C(b,m, n), σ, t � s) = μ(n, σ, t � s) if ¬σ(b)

μ(R(t), σ, t � s) = R(σ(t))

To illustrate the use of the match trees and give some intuition on how we build

such trees, we consider the rewrite rules f(g(x), x) → x and f(x, x) → c if h(x).

In Fig. 1 the match tree for the first rule is shown. We can see that the root node

(on the far left) checks whether the head symbol of the first argument is a g or

not. If this is the case, it binds the argument of g to x and proceeds to the next

argument. As g has only one argument, this means we look at the next argument

of the enclosing function f . The M node checks to see if this argument is the same

as the value of x and returns the result (also x) if this is the case. Note that the

head symbol f does not occur as root in the tree. This is because we make one tree

for all rules with head symbol f , thus removing the need to check for f itself in the
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tree.

F (g)

S (x )

true

Xfalse

N M (x )

R(x )

true

Xfalse

Fig. 1. Match tree for f(g(x), x) → x

The tree for the conditional rule is shown in Fig. 2. Here we see that the first

argument is stored and the second argument is matched with the first argument. If

they are the same, the condition h(x) is checked, using the value bound to x, before

returning the result c.

S (x ) N M (x )

Xfalse

C (h(x ))

true Xfalse

R(c)

true

Fig. 2. Match tree for f(x, x) → c if h(x)

Finally, we combine both trees to the complete match tree for function symbol

f , as shown in Fig. 3. Such a combination is made by weaving the trees together

S (v) F (g)

Nfalse

S (w)

true

M (v)

X

false

C (h(v))
true

X
false

R(c)
true

N M (w) R(w)
true

M (v)

false
Xfalse

C (h(v))

true Xfalse

R(c)

true

Fig. 3. Combined match tree for f

and synchronising on N nodes. The following rules give a simplified version of our

algorithm to compute comb(T ), the combination of the trees in T . If more than one

rule can be applied, the one that occurs first in the list below is applied. In the case

that one rule can be applied in different ways, one is chosen non-deterministically.

We write T for a set of trees, which we can partition in Tf and T \ Tf , of which

the former contains all F nodes that check for symbol f (and only those nodes).

Projection functions π1 and π2 are used to filter a set of F (f,m, n) nodes to the m,

respectively n values. We write Nf (T ) for T with an N node added to the root of

every tree in it; the amount of added nodes corresponds to the number of arguments

f has (in the pattern). The substitution of a variable x by y in tree m is denoted
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by m[y/x]. With x′ we indicate a fresh variable (i.e. one not occurring in any of the

trees).

comb({R(t)} ∪ T ) → R(t)

comb({C(t,m, n)} ∪ T ) → C(t, comb({m} ∪ T ), comb({n} ∪ T ))

comb({M(x,m, n)} ∪ T ) → M(x, comb({m} ∪ T ), comb({n} ∪ T ))

comb({S(x,m)} ∪ T ) → S(x′, comb({m[x′/x]} ∪ T ))

comb({F (f,m, n)} ∪ T ) → F (f, comb(π1(Tf ) ∪ Nf (T \ Tf )),

comb(π2(Tf ) ∪ (T \ Tf )) )

comb({N(m0), . . . , N(mk)}) → N(comb({m0, . . . ,mk}))

comb({X} ∪ T ) → comb(T )

comb(∅) → X

The first rule indicates that as soon as there is a tree indicating a positive

match, we can just return that match and ignore the other trees. In the rule for S

we introduce a fresh variable to avoid conflicts with variables in other trees. When

applying the F rule for a symbol f , we consider all trees that have such a root

node. This is done as the first subtree of an F processes arguments of the matched

function symbol and this can only be done once (due to the matching function).

Also, during matching of the arguments (of the subterm), the other trees that do not

participate need to be ignored until f and its arguments are completely matched.

For this reason we add the necessary N nodes to these trees.

There are several optimisations to the above. For example, between two N

nodes, we can ensure that matching a variable occurs only once and we can combine

all S nodes into one, as they all store the same term. In case both subtrees of an

M or C node are the same, we can replace it with the subtree itself. Also, S nodes

that bind a value to a variable that is never used in the subtree can be replaced by

the subtree.

Note that in the first three cases there might be more than one way to choose

T . As choosing

4 Compiling Innermost Rewriter

The implementation of the innermost rewriter is very similar to that of the μCRL

toolset [4] and ASF+SDF. We discuss the main points. To achieve optimal per-

formance, compilation of a specific rewrite system is essential. This is done as

described in Sect. 2. The main rewrite function would be of the following form (not

considering implicit substitutions and variables as head symbols):
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function innermost(f(t1, . . . , tn))

for i ∈ {1, . . . , n} do

ti := innermost(ti)

return rewr f (t1, . . . , tn)

A specialised function for a function symbol f uses the match tree for f to see

if any rule can be applied. If this is the case, the right-hand side of that rule is

built and the generic rewrite function is called on this term. If no rule matches,

then the original term is built and returned. An example of the code that would be

generated of a function with rewrite rule f(c, x) = g(h(x), x) is as follows.

function rewr f (arg1, arg2)

if arg1 = c then

return rewrite(g(h(arg 2), arg2))

else

return f(arg1, arg2)

One important optimisation is that of avoiding needless traversal of normal

forms. The main observation here is that one can assume that the arguments of a

specific rewrite function are already in normal form. This is the case when called

from the main rewrite function, as it first explicitly rewrites these arguments, and

also needs to be the case when called from a specific rewrite function.

We achieve this optimisation by taking the instantiations of the variables of the

matching rewrite rule, which are in normal form by definition, and building up

the term around it with the appropriate specific rewrite functions. For example,

if we need to build a term g(h(x), x), we call the specific rewrite function of h on

the instantiation of x, returning the normal form of h(x), and then call the specific

rewrite function of g with the previous result and the instantiation of x. The rewrite

function for f then becomes as follows:

function rewr f (arg1, arg2)

if arg1 = c then

tmp := rewrh(arg2)

return rewr g(tmp, arg2)

else

return f(arg1, arg2)

In our case we also have to consider applicative terms. This means that a

function of arity n has at most n arguments (instead of exactly n). This is solved

by generating specific rewrite functions for each function symbol and number of

arguments allowed. So, for f we would have two additional rewrite functions (i.e.

one for one argument and another for no arguments at all).
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5 Compiling JITty Rewriter

The JITty strategy delays rewriting of arguments for as long as they are not needed

for matching. By doing so, it avoids rewriting terms that can be removed without

ever being used. A typical example is the if , which often has the following rules:

α : if (true, x, y) → x

β : if (false, x, y) → y

γ : if (b, x, x) → x

Instead of rewriting all arguments first and then matching these rules, like in-

nermost rewriting does, JITty uses a strategy to, for example, only rewrite the

first argument and then check rules α and β. Only if these rules do not match,

the other arguments are rewritten and γ is matched. Such a strategy, written

as [{1}, {α, β}, {2, 3}, {γ}] for the if , can be computed automatically. Note that

strategies need to be full and in-time [17], which means that all rules and argument

indices must occur in the strategy and every argument index must occur before the

rules that need that argument for matching.

Concerning code generation, this strategy differs from innermost in the fact that

the generic rewrite function (JITty) no longer rewrites the arguments of a function

f before calling its specific rewrite function rewr f . Instead rewr f itself does this,

as specified by the strategy for function symbol f . Also, where there is only one

match tree for all rules (with the same head symbol) in innermost, with JITty we

have a match tree per set of rewrite rules in the strategy. In the above example this

would mean there is a tree matching both rule α and β and a tree matching γ.

The code for a strategy is generated such that the elements in the strategy

are executed in order. For the if this would mean that the corresponding specific

function will consist of first rewriting the first argument, then the code for the match

tree of {α, β}, etc., as can be seen in the following code.

function rewr if (arg1, arg2, arg3)

arg1 := JITty(arg1)

if arg1 = true then

return arg2

else if arg1 = false then

return arg3

else

arg2 := JITty(arg2)

arg3 := JITty(arg3)

if arg2 = arg3 then

return arg2

else

return if (arg1, arg2, arg3)
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5.1 Strategy generation

Because we do not want to burden our users with supplying strategies themselves,

we need to generate reasonable strategies from a given set of rewrite rules (i.e. one

strategy per function symbol). This is done by observing which arguments need

to be rewritten to be able to match a given rule. An argument that is needed

for matching by most of the rules is added to the strategy, indicating it needs to

be rewritten first. In the case that all arguments of a rule that are essential for

matching are rewritten, this rule is added to the strategy. This process continues

until all rules and arguments are in the strategy.

More formally, let dep(r) be a function that returns the indices of the arguments

that need to be rewritten before matching rule r, i.e. (with vars(t) the variables

occurring in t)

dep(f(t1, . . . , tk) → u) = {i : ti �∈ V ∨ ti ∈
⋃

j �=i

vars(tj)}

That is, a rule depends on argument i if the ith argument is either a specific term

(not just a variable) or it is a variable that also occurs in another argument.

Also, let occ(i, Rf ) be a function that returns the number of rules of a set Rf

that require argument i:

occ(i, Rf ) = #{r ∈ Rf : i ∈ dep(r)}

We denote the empty strategy with [] and a set S of argument indices or rewrite

rules prepended to a strategy l by S �c l. Here, �c only adds S to l if S is not

empty (i.e. ∅�c l = l). A strategy for a set of rules Rf is generated with strat (Rf , ∅),
where strat(R, I) is defined as follows, for any set of rules R ⊆ Rf and set of indices

I ⊆ {1, . . . , ar (f)} (with I the set of argument indices added to the strategy so far

and ↑ the maximum quantifier):

strat (∅, I) = ({1, . . . , ar (f)} \ I) �c []

strat (R, I) = T �c J �c strat (R \ T, I ∪ J) if R �= ∅

where T = {r ∈ R : dep(r) ⊆ I},

J = {i : i �∈ I ∧ occ(i, R \ T ) =↑j �∈I occ(j,R \ T )}

For the if above we can now calculate strat({α, β, γ}, ∅). As all rules depend

on at least one argument, no rules will be added in the first step. And, as both

α and β depend (solely) on the first argument, this argument will be added first.

Thus we get ∅�c {1}�c strat ({α, β, γ}, {1}). Then, as the first argument is now in

the strategy, we can add α and β. Doing so means that there is only one rule left

(γ) and it needs both remaining arguments, which we therefore add. This gives us

∅�c {1}�c {α, β}�c {2, 3}�c strat ({γ}, {1, 2, 3}). As only γ remains to be added we

get ∅�c {1}�c {α, β}�c {2, 3}�c {γ}�c ∅�c ∅�c [], which is [{1}, {α, β}, {2, 3}, {γ}].

Our approach deviates from the just-in-time strategy as defined in [17] in two

M. van Weerdenburg / Electronic Notes in Theoretical Computer Science 174 (2007) 139–155148



ways. First of all, we do not require arguments to be rewritten in order. This way

we basically get the same strategy as before when we permute the arguments of the

if . We also do not preserve in any way the order in which rules were specified by

the user while just-in-time would (as far as a strategy allows this).

5.2 Normal forms

Unlike innermost rewriting, JITty rewriting does not allow for a simple build up

mechanism (as described in Sect. 4). To avoid rewriting normal forms we want to

tag terms to indicate that they are in normal form (or not). A simple way is to add

an extra function symbol ν, such that ν(t) means that t is in normal form (which is

done in [18]). However, such an addition results in a time penalty due to additional

construction of terms.

Our approach is to introduce extra function symbols f s for each original func-

tion symbol f . Each extra symbol f s has an annotation s indicating which of its

arguments is in normal form. For example, f011 indicates that the second and third

arguments are in normal form. We will write ε for the absence of an annotation (i.e.

f ε is equal to f). Note that having these additional symbols does not add extra costs

in construction of terms as the construction only differs in which function symbol is

used. And because of the way it is used, normal forms will always be built up of the

original function symbols, thus matching does not change at all. The only change

is the increase of the number of rewrite methods, which only effects initialisation

time and needed (static) memory.

To use these annotations we need to convert the rewrite rules in such a way

that they use the annotations. Given a set of variables N and a term t we define

ψ(t,N) to be the annotated version of t under the assumption that (the values

bound to) the variables of N are in normal form. More precisely (where [true] = 1

and [false ] = 0):

ψ(x,N) = x

ψ(f(t1, . . . , tn), N) = f [t1∈N ]...[tn∈N ](ψ(t1, N), . . . , ψ(tn, N))

Let ar(f) denote the arity of function symbol f , vars(t) the set of variables

occurring in t and depf (r) the indices of arguments of f that the JITty strategy will

have rewritten before trying to apply rewrite rule r. We define a transformation

function φ on TRSs such that φ((Σ,→)) = (Σ′,→′), where Σ′ and →′ are defined

as follows:
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Σ′ = {f s : f ∈ Σ ∧ s ∈
⋃

0≤i≤ar(f){0, 1}
i }

→′ = {f s(t1, . . . , tn) → u′ if c′ : r = f(t1, . . . , tn) → u if c ∧

r ∈ → ∧ s ∈ {ε} ∪ {0, 1}n ∧

N =
⋃

i∈depf (r) ∨ s.i=1 vars(ti) ∧

c′ = ψ(c,N) ∧ u′ = ψ(u,N)

} ∪ {f s → f if true : s �= ε ∧ f s ∈ Σ′}

This translation adds the annotated function symbols and annotated copies of

the rewrite rules. It makes sure that the right-hand side of rules correctly uses the

annotations based on the annotation of the head symbol of the left-hand side and

which arguments will be rewritten before application. It also adds rules to remove

the annotations.

For these latter rules the code generation has to be adapted such that these are

only applied in case no other rule matches. This way we make sure that normal

forms are always without annotations, which ensures that matching does not have

to consider annotations at all. The function symbols with an annotation indicat-

ing that none of the arguments are in normal form can be safely replaced by the

unannotated version.

To illustrate the translation, we look at the following example. Assume the

following rules (where [] is the empty list and a � l is the list l prepended with a):

α : len([]) → 0

β : len(a � l) → 1 + len(l)

Given the above transformation, we obtain the following set of rules. Note that

we have annotated the name of the rules as well with the effect that they have on

the annotation of len.

α : len([]) → 0

α1 : len1([]) → 0

β→1 : len(a � l) → 1 + len1(l)

β1→1 : len1(a � l) → 1 + len1(l)

1→ : len1(l) → len(l)

Note that in practice it might not be feasible to use φ(R) instead of TRS R

because of the exponential increase in size. However, it is often sufficient to limit

the annotations to, say, 3 arguments.
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6 Evaluation

We evaluate the implementations of our mCRL2 rewriters by looking at some bench-

marks. These are divided into two parts, viz. benchmarks for rewriting a single

closed term and benchmarks for generating labelled transition systems. The reason

for this division is that LTS generation, at least as it is implemented in μCRL and

mCRL2, uses rewriters in a very specific way.

6.1 LTS generation

The μCRL and mCRL2 toolsets first convert the specification to a symbolic LTS,

which consists of a list of guarded transitions and the effect on the state these have.

Such a guard is an open term that indicates under which valuation of the variables

a transition can happen. To generate all such valuations we use a form of narrowing

[6]; we repeatedly do case distinction on a variable and rewrite the guard to see if

it evaluates to true or false.

As only a small change is made in each step, most of the time the rewriter

will be busy reestablishing that large parts of the guard are still in normal form.

Optimisations that avoid normal form rewriting are actually less effective in this

setting, as they always need to traverse a term at least once to establish that it is

a normal form.

For the LTS benchmarks we have taken four specifications (chatboxt, 1394-fin,

ccp33 and commprot) from the μCRL toolset, converted them to symbolic LTSs

that are easily translatable to LOTOS [10] (for the CADP toolset [8]) and mCRL2.

The used specifications differ slightly from the versions in the μCRL toolset to be

able to translate to CADP. Note that, unlike the μCRL and mCRL2 toolsets, CADP

is not specialised in handling these symbolic LTSs, which can negatively influence

their results. All tools were used on the same machine with 2 gigabytes of memory

(of which the tools were only allowed to use 1.5 gigabytes to avoid swapping). Note

that we write OoM (out of memory) in case a tool was terminated because it needed

more than the allowed amount of memory. For this reason we included additional

variants of benchmarks limited to an amount of states that all tools could handle.

Looking at Table 1, we see that our JITty implementation performs better on

average than any of the others. The exact difference depends highly on the chosen

example, as some depend more heavily on functions that allow for JITty techniques.

In the CADP column we see several OoMs indicating the tool needed more than

the allowed amount of memory.

Our innermost implementation is about two times as slow as μCRL in the,

calculational-wise, heavier cases. This could be either because μCRL also applies

JITty-like techniques in a limited fashion or because their implementation does not

need to deal with applicative terms. The implementation is otherwise very similar.

Given the times in Table 1 it is clear that only in case there is a significant difference

in execution time between the mCRL2 implementations there is also a significant

difference with μCRL. This seems to support the idea that our innermost rewriter

is slower than μCRL because the latter also applies some JITty techniques.
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Table 1
LTS generation benchmarks

# states CADP μCRL mCRL2

Innermost JITty

chatboxt 65536 1.3s 5.0s 4.0s 3.5s

1394-fin 400 65.3s 0.1s 0.5s 0.4s

1394-fin 371804 OoM 103.8s 212.1s 92.3s

ccp33 7000 25.5s 27.6s 61.8s 8.7s

ccp33 20000 OoM 79.0s 171.9s 26.2s

commprot 700 53.9s 11.0s 12.4s 13.0s

commprot 5000 OoM 77.8s 92.1s 93.0s

6.2 Closed term rewriting

To investigate the performance of our rewriters in a more general setting we look at

the benchmarks in Table 2. These benchmarks consist of only a single closed data

term that needs to be rewritten to normal form. In order to test the rewriters of the

LTS generation tools we again use μCRL specifications as before, only with a single

process that can do precisely one transition which has the term to be rewritten as

an argument (such that these tools are effectively only rewriting that term). In

addition to the LTS generation tools we also consider the functional language tools

Maude [5], Glasgow Haskell Compiler (GHC) [11], Clean [15] and ASF+SDF. For

these tools the process part of the specification is discarded in the conversion.

The benchmarks we use are a naive Fibonacci implementation (fib(32)), bench-

marks as used in [13] (evalexp, evalsym, evaltree) and a binary search (b.search).

Fibonacci and evalsym are mainly calculational benchmarks, evalexpr differentiates

eager and lazy implementations and evaltree is a memory extensive benchmark.

The binary search is a benchmark that takes an increasing function, a value and a

bound and searches that function (in the domain determined by the bound) for the

given value. This benchmark is mainly a test for applicative terms (as the search

function takes a function as argument), but also requires a lazy implementation for

reasonable execution. The function we use as argument is the Fibonacci function.

We write NA (not applicable) in Table 2 for tools that do not support applicative

terms.

From the benchmarks in Table 2 we can see that in general the rewriters of

the LTS generators can compete with the fastest rewriters for functional languages

available, which seems to indicate that supporting open term rewriting and implicit

substitution is not a bottleneck. We can also see that our JITty implementation

is often significantly slower than the others and is more comparable to Maude,

which uses an interpreting rewriter. This is likely due to the fact that JITty always

has to build the result of rule application before rewriting that term, which is
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Table 2
Closed term rewriting benchmarks

Maude GHC Clean ASF+SDF CADP μCRL mCRL2

Innermost JITty

fib(32) 23.4s 4.0s 2.6s 2.7s 2.4s 2.3s 4.0s 11.2s

evalexpr 3.3s 0.4s 0.3s OoM 0.5s OoM OoM 5.4s

evalsym 231.3s 18.7s 15.8s 36.3s OoM 19.0s 49.3s 254.2s

evaltree 16.7s OoM 2.1s 1.6s 0.6s 1.0s 1.9s 25.6s

b.search NA 4.5s 2.5s NA NA NA OoM 10.8s

very expensive in our implementation. The memory extensive evaltree benchmarks,

where JITty is about twelve times slower than our innermost rewriter, seems to

support this. Also note that the evalsym benchmark, meant to test pure calculation

speed, favors those that use a lazy implementation (ASF+SDF and the mCRL2

innermost rewriter are the only strict innermost rewriters).

7 Conclusion

We have described the implementation of the rewriters of the mCRL2 toolset. The

implementation of the innermost rewriter is very similar to the implementation of

the μCRL rewriter and the rewriter used in ASF+SDF. The second implementation

is that of a compiling JITty rewriter, which is, as far as we know, the first of its

kind.

Benchmarks are given to illustrate the improvement this JITty rewriter is over

the innermost rewriters used for LTS generation. For closed term rewriting we have

shown that our innermost rewriter can compete with the best rewriters currently

available (ignoring the effects of lazy rewriting) and that JITty is a bit slower. The

latter is likely due to the fact that in this implementation more intermediate terms

have to be constructed, which is quite expensive.

The fact that the rewriters used for LTS generation can clearly compete with

the fastest rewriters for functional languages seems to suggest that adapting the

latter to support open term rewriting (which is essential for LTS generation) should

not be a problem. That is, unless these functional languages support additional

features with respect to the more basic languages used in process specifications that

are fundamentally in conflict with efficient open term rewriting. In any case, such

an adaptation would allow developers and users of tools centered around process

behaviour and theorem proving (and most likely other fields as well) to have direct

access to the functionality offered by the expertise of the functional programming

community.

Most significant future work will be the improvement of the JITty rewriter for

closed term rewriting and especially the study of the implications of the restrictions

we have put on higher-order rewriting.
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