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Abstract

Generation of labelled transition systems from system specifications is
highly dependent on efficient rewriting (or related techniques). We give
an account of the implementation of two rewriters of the mCRL2 toolset.
These rewriters work on open terms and use nonlinear match trees. A
comparison is made with other commonly used efficient rewriters.

1 Introduction

Verification of systems is an important field of research that is directly linked to
the practical world. A widely used technique in this field is model checking. In
short, this often means that a Labelled Transition System (LTS) is generated
from a system specification and requirements are checked on this LTS. However,
the task of generating LTSs is very time and space demanding. In cases where
LTS generation is done with the help of rewriters, generation of typical LTSs
of, say, 107 transitions requires at least a few times more than 107 calls to the
rewriter. In fact, inspection of this process in the mCRL2 toolset [9], which
supports modelling and verification of systems, shows that more than 90% of
the time generating an LTS is spent rewriting.

Apart from on-the-fly LTS reductions (e.g. modulo some equivalence), there
are two clear paths towards optimisation of LTS generation. One is to reduce
the number of times the LTS generator uses the rewriter. The other, which we
consider here, is to optimise the rewriting procedure.

We discuss two implementations we have made for the mCRL2 toolset. One
uses innermost rewriting, the other just-in-time (JITty) rewriting [17]. The lat-
ter is a strategy close to lazy rewriting [7] (i.e. rewriting (sub)terms only when
needed). An essential property of these rewriters is that they are compiling
rewriters, meaning that a specialised rewriter is generated for a given specifi-
cation. Also, they support rewriting of open terms (i.e. terms in which (free)
variables may occur), which is required for LTS generation.

As mCRL2 has a higher-order data language, rewriting is on higher-order
(applicative) terms. Due to the fact that higher-order matching is NP-hard [3],
we restrict the rewriting to using only simple syntactic pattern matching. This
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basically boils down to rewriting applicative terms without being able to do
η-reductions. It seems that this restriction does not really impedes practical
use of the rewriter (at least not with case studies, such as [12], so far), but the
precise implications should be subject to future research. But even if our choice
is too restricted for general-purpose use, a limited, but fast rewriter is still very
useful for a large set of problems.

In order to implement efficient matching we use an adaptation of exist-
ing algorithms that, instead of matching each rule separately, combine sets of
rules into a tree structure that allows for simultaneous matching of these rules.
Although implementations of such algorithms often require left-hand sides to
contain each variable at most once (i.e. the left-hand sides must be linear), our
implementation does not have this restriction.

Another important optimisation is to avoid rewriting normal forms multiple
times. Although this is fairly easy with innermost rewriting, it is much more
involved in the JITty rewriter.

In short, we have implemented a compiling JITty rewriter for conditional
rewrite rules on open applicative terms, making use of efficient matching of non-
linear applicative terms. As far as we know, this is the first of its kind.

First, we introduce the part of the mCRL2 data language that is relevant for
rewriting and the general architecture of our implementations in Sect. 2. In
Sect. 3 we discuss the matching algorithm used and Sect. 4 and Sect. 5 contain
the descriptions of the innermost and JITty rewriters, respectively. We conclude
with an analysis of some benchmarks in Sect. 6.

2 Preliminaries

The data language we consider here is the core data language of mCRL2. It
has only one operator, viz. application. The complete data language contains
many additional constructs for ease of modelling (including λs), but they are
all expressible in this core. From this point on, we will refer to this core simply
as mCRL2.

The signature (Σ) of mCRL2 consists of a set of basic sorts SB , a set
of variables V and a set of function symbols F. Each variable or function
symbol has a sort. Sorts s are defined as follows, where b ∈ SB and → is
right-associative:

s := b | s→ s

With xs ∈ V a variable of sort s and fs ∈ F a function symbol of sort s, the
definition of mCRL2 terms ts of sort s is as follows:

ts := xs | fs | ts′→s(ts′)

Typical basic sorts are the booleans B or the integers Z. Function symbols
are, for example, true or even. The sorts as subscripts of terms are usually
omitted. Given a term f(t1) . . . (tn) we call f the head symbol and ti the ith
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argument. The arity of a function symbol is the maximal number of arguments
it can have. For readability we usually write terms with sequences of applica-
tions (i.e. terms t(u)) such as ((f(w))((g(x))(y)))(z) simply as f(w, g(x, y), z).

Rewrite rules are of the form t → u if c, where terms t and u have the
same sort. Term c of sort B is the condition of a rewrite rule indicating whether
or not the rule may be applied (i.e. only when c rewrites to true). Often we
omit this condition in the case c is (syntactically) equal to true.

We write (Σ,→) for a signature Σ and set of rewrite rules → to denote a
Term Rewrite System (TRS) [6].

The architecture of the rewriters is as follows. The rewriters first preprocess the
TRS by sorting the rules by head symbol. For each head symbol f and number of
arguments n that f can have, we create a specialised function rewrf (t1 , . . . , tn)
that returns a normal form of the term f(t1) . . . (tn). The implementation of a
function rewrf takes care of the matching and applications of the rules for f
by using the match trees of Sect. 3. Also a main rewrite function is added that
takes a single term t and calls the specialised function for the head symbol of t.
Depending on the strategy it also rewrites the arguments of a function symbol,
before calling its specialised function.

For reasons of efficiency we use implicit substitutions. This means that,
instead of first substituting specific values for variables and then rewriting the
term, we apply substitution on-the-fly during rewriting (i.e. we rewrite in a
context of substitutions). This basically boils down to replacing a variable with
its value as soon as it is encountered. We can, however, also encounter terms of
the form x(t1, . . . , tn). In the case that x is not bound to a value we can just
ignore it and rewrite its arguments. Otherwise, we need to get the value of x,
append the arguments t1, . . . , tn and then rewrite that term.

For the implementation of the data terms we use the ATerm [21] library.
This automatically gives us term sharing1 and constant time equality tests.
Construction of terms, however, is more expensive.

3 Match trees

Straightforward implementations of rewrite systems will try to match the term
to be rewritten with every left-hand side of a rewrite rule separately. For ex-
ample, with the system {t1 → u1, t2 → u2} one could first try to match a term
with t1 and afterwards, if it did not match, with t2 (or vice versa).

That this is not a very efficient manner of matching can be seen clearly
by looking at rules for equality functions. Assuming a sort S with n simple
constructors (i.e. without arguments), the equality on S needs n2 rules (for
every pair in S × S).2 However, by combining these rules into a specific tree

1That is, equal (sub)terms are only stored once in memory. Note that changing a term in
one place will not automatically change (equal) terms in other places.

2Note that many languages allow for more compact notations by assuming an order on
rules. Such features are in general not safe when rewriting with open terms (e.g. rewriting
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structure, we can test for a match in the order of n. Such trees are in essence
decision trees for a matching algorithm.

The method we use for this is similar to the ones used in the ASF+SDF [19]
rewriters [20] and ELAN [22]. For rules with linear left-hand sides (i.e. left-hand
sides in which variables occur at most once), algorithms to create such trees can
be found in [14, 2, 16]. As we have applicative terms and allow nonlinear rewrite
rules, our approach deviates a bit. Note that in ASF+SDF nonlinear rules are
also allowed, but converted to linear rules, which requires additional side con-
ditions. Another related method is that of definitional trees [1]. These trees for
linear rules are specialised for a combination of lazy rewriting and narrowing [6].

Match trees determine the way a term is matched; each node of a tree represents
a basic instruction and guides the path through the tree. We start at the root
and walk up the tree, choosing branches based on the result of matching so far.
For example, one node could be to check whether a (sub)term has a specific
head symbol. Matching continues with one branch if the symbol was found and
with the other branch otherwise.

The way a term is traversed during matching is as follows. Matching a term
f(t1, . . . , tk) according to a match tree m is done in a left-most way; it starts
with argument t1 of f and executes the specific functionality of m. We do not
have to match f itself as we make a specialised rewrite function that handles
only terms starting with f (for each symbol f). At any point during execution
of the matching algorithm there is a context of values bound to variables (i.e.
a context of substitutions) and a stack of terms to be matched. Initially the
context is empty and the stack consists of the arguments t1 to tk of f (with t1 on
top). The matching algorithm always considers the top of the stack, which we
refer to as g(u1, . . . , ul). During matching the context will be built up, resulting
in a substitution that makes the left-hand side of the matching rule equal to
f(t1, . . . , tk).

Our match trees m have the following structure, with x ∈ V, f ∈ F and
term t.

m ::= S(x,m) |M(x,m,m) | F (f,m,m) | N(m) | C(t,m,m) | R(t) | X

We give an intuition of functionality of the trees before giving the actual match-
ing function. A S(x,m) binds the top of the stack to variable x and continues
with tree m. Such a value bound to x is tested for equality with the top of the
stack with M(x,m, n), which continues with tree m on equality and n other-
wise. With F (f,m, n) matching continues with u1, . . . , ul on top of the stack
and tree m if f is equal to g. If not, tree n is used without changing the stack.
Node N(m) removes the top of the stack and continues with m. A condition b
can be checked with C(b,m, n). A successful match is indicated by R(t), where
t is the result of applying a matching rule. Unsuccessful matches occur with X
and when the stack is empty (i.e. there are too few arguments).

f(x) in the system f(0) → e ; f(n) → g(f(n − 1)) does not terminate). In mCRL2 we use
standard conditional rewriting.

4



Let σ be a context, σ[x 7→ t] the context σ in which term t is bound to
variable x and σ(t) a term t in which every variable is replaced by the value
bound to it in σ. Also let [] denote the empty stack and t� s term t on top of
stack s. The definition of the matching function µ, which returns either X
(no match) or R(t) (match with result t), is as follows:

µ(m, σ, []) = X
µ(S(x,m), σ, t� s) = µ(m,σ[x 7→ t], t� s)
µ(M(x,m, n), σ, t� s) = µ(m,σ, t� s) if σ(x) = t
µ(M(x,m, n), σ, t� s) = µ(n, σ, t� s) if σ(x) 6= t
µ(F (f,m, n), σ, g(u1, . . . , un) � s) = µ(m,σ, u1 � . . .� un � s) if f = g
µ(F (f,m, n), σ, g(u1, . . . , un) � s) = µ(n, σ, g(u1, . . . , un) � s) if f 6= g
µ(N(m), σ, t� s) = µ(m,σ, s)
µ(C(b,m, n), σ, t� s) = µ(m,σ, t� s) if σ(b)
µ(C(b,m, n), σ, t� s) = µ(n, σ, t� s) if ¬σ(b)
µ(R(t), σ, t� s) = R(σ(t))

To illustrate the use of the match trees and give some intuition on how we
build such trees, we consider the rewrite rules f(g(x), x) → x and f(x, x) → c
if h(x). In Fig. 1 the match tree for the first rule is shown. We can see that the
root node (on the far left) checks whether the head symbol of the first argument
is a g or not. If this is the case, it binds the argument of g to x and proceeds
to the next argument. As g has only one argument, this means we look at the
next argument of the enclosing function f . The M node checks to see if this
argument is the same as the value of x and returns the result (also x) if this is
the case. Note that the head symbol f does not occur as root in the tree. This
is because we make one tree for all rules with head symbol f , thus removing the
need to check for f itself in the tree.

F (g)

S (x )

true

Xfalse

N M (x )

R(x )

true

Xfalse

Figure 1: Match tree for f(g(x), x) → x

The tree for the conditional rule is shown in Fig. 2. Here we see that the first
argument is stored and the second argument is matched with the first argument.
If they are the same, the condition h(x) is checked, using the value bound to x,
before returning the result c.

Finally, we combine both trees to the complete match tree for function sym-
bol f , as shown in Fig. 3. Such a combination is made by weaving the trees
together and synchronising on N nodes. The following rules give a simplified
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S (x ) N M (x )

Xfalse

C (h(x ))

true Xfalse

R(c)

true

Figure 2: Match tree for f(x, x) → c if h(x)

S (v) F (g)

Nfalse

S (w)

true

M (v)

X
false

C (h(v))
true

X
false

R(c)
true

N M (w) R(w)
true

M (v)

false
Xfalse

C (h(v))

true Xfalse

R(c)

true

Figure 3: Combined match tree for f

version of our algorithm to compute comb(T ), the combination of the trees in
T . If more than one rule can be applied, the one that occurs first in the list
below is applied. In the case that one rule can be applied in different ways,
one is chosen non-deterministically. We write T for a set of trees, which we can
partition in Tf and T \ Tf , of which the former contains all F nodes that check
for symbol f (and only those nodes). Projection functions π1 and π2 are used
to filter a set of F (f,m, n) nodes to the m, respectively n values. We write
Nf (T ) for T with an N node added to the root of every tree in it; the amount
of added nodes corresponds to the number of arguments f has (in the pattern).
The substitution of a variable x by y in tree m is denoted by m[y/x]. With x′

we indicate a fresh variable (i.e. one not occurring in any of the trees).

comb({R(t)} ∪ T ) → R(t)
comb({C(t,m, n)} ∪ T ) → C(t, comb({m} ∪ T ), comb({n} ∪ T ))
comb({M(x,m, n)} ∪ T ) → M(x, comb({m} ∪ T ), comb({n} ∪ T ))
comb({S(x,m)} ∪ T ) → S(x′, comb({m[x′/x]} ∪ T ))
comb({F (f,m, n)} ∪ T ) → F (f, comb(π1(Tf ) ∪Nf (T \ Tf )),

comb(π2(Tf ) ∪ (T \ Tf )) )
comb({N(m0), . . . , N(mk)}) → N(comb({m0, . . . ,mk}))
comb({X} ∪ T ) → comb(T )
comb(∅) → X

The first rule indicates that as soon as there is a tree indicating a positive
match, we can just return that match and ignore the other trees. In the rule for
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S we introduce a fresh variable to avoid conflicts with variables in other trees.
When applying the F rule for a symbol f , we consider all trees that have such a
root node. This is done as the first subtree of an F processes arguments of the
matched function symbol and this can only be done once (due to the matching
function). Also, during matching of the arguments (of the subterm), the other
trees that do not participate need to be ignored until f and its arguments are
completely matched. For this reason we add the necessary N nodes to these
trees.

There are several optimisations to the above. For example, between two N
nodes, we can ensure that matching a variable occurs only once and we can
combine all S nodes into one, as they all store the same term. In case both
subtrees of an M or C node are the same, we can replace it with the subtree
itself. Also, S nodes that bind a value to a variable that is never used in the
subtree can be replaced by the subtree.

Note that in the first three cases there might be more than one way to choose
T . As choosing

4 Compiling Innermost Rewriter

The implementation of the innermost rewriter is very similar to that of the µCRL
toolset [4] and ASF+SDF. We discuss the main points. To achieve optimal
performance, compilation of a specific rewrite system is essential. This is done
as described in Sect. 2. The main rewrite function would be of the following
form (not considering implicit substitutions and variables as head symbols):

function innermost(f(t1, . . . , tn))
for i ∈ {1, . . . , n} do

ti := innermost(ti)
return rewrf (t1, . . . , tn)

A specialised function for a function symbol f uses the match tree for f to
see if any rule can be applied. If this is the case, the right-hand side of that
rule is built and the generic rewrite function is called on this term. If no rule
matches, then the original term is built and returned. An example of the code
that would be generated of a function with rewrite rule f(c, x) = g(h(x), x) is
as follows.

function rewrf (arg1, arg2)
if arg1 = c then

return rewrite(g(h(arg2), arg2))
else

return f(arg1, arg2)

One important optimisation is that of avoiding needless traversal of normal
forms. The main observation here is that one can assume that the arguments
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of a specific rewrite function are already in normal form. This is the case
when called from the main rewrite function, as it first explicitly rewrites these
arguments, and also needs to be the case when called from a specific rewrite
function.

We achieve this optimisation by taking the instantiations of the variables of
the matching rewrite rule, which are in normal form by definition, and building
up the term around it with the appropriate specific rewrite functions. For
example, if we need to build a term g(h(x), x), we call the specific rewrite
function of h on the instantiation of x, returning the normal form of h(x), and
then call the specific rewrite function of g with the previous result and the
instantiation of x. The rewrite function for f then becomes as follows:

function rewrf (arg1, arg2)
if arg1 = c then

tmp := rewrh(arg2)
return rewrg(tmp, arg2)

else
return f(arg1, arg2)

In our case we also have to consider applicative terms. This means that a
function of arity n has at most n arguments (instead of exactly n). This is solved
by generating specific rewrite functions for each function symbol and number
of arguments allowed. So, for f we would have two additional rewrite functions
(i.e. one for one argument and another for no arguments at all).

5 Compiling JITty Rewriter

The JITty strategy delays rewriting of arguments for as long as they are not
needed for matching. By doing so, it avoids rewriting terms that can be removed
without ever being used. A typical example is the if , which often has the
following rules:

α : if (true, x, y) → x
β : if (false, x, y) → y
γ : if (b, x, x) → x

Instead of rewriting all arguments first and then matching these rules, like
innermost rewriting does, JITty uses a strategy to, for example, only rewrite
the first argument and then check rules α and β. Only if these rules do not
match, the other arguments are rewritten and γ is matched. Such a strategy,
written as [{1}, {α, β}, {2, 3}, {γ}] for the if , can be computed automatically.
Note that strategies need to be full and in-time [17], which means that all rules
and argument indices must occur in the strategy and every argument index must
occur before the rules that need that argument for matching.

Concerning code generation, this strategy differs from innermost in the fact
that the generic rewrite function (JITty) no longer rewrites the arguments of a
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function f before calling its specific rewrite function rewrf . Instead rewrf itself
does this, as specified by the strategy for function symbol f . Also, where there
is only one match tree for all rules (with the same head symbol) in innermost,
with JITty we have a match tree per set of rewrite rules in the strategy. In the
above example this would mean there is a tree matching both rule α and β and
a tree matching γ.

The code for a strategy is generated such that the elements in the strategy
are executed in order. For the if this would mean that the corresponding specific
function will consist of first rewriting the first argument, then the code for the
match tree of {α, β}, etc., as can be seen in the following code.

function rewr if (arg1, arg2, arg3)
arg1 := JITty(arg1)
if arg1 = true then

return arg2

else if arg1 = false then
return arg3

else
arg2 := JITty(arg2)
arg3 := JITty(arg3)
if arg2 = arg3 then

return arg2

else
return if (arg1, arg2, arg3)

5.1 Strategy generation

Because we do not want to burden our users with supplying strategies them-
selves, we need to generate reasonable strategies from a given set of rewrite rules
(i.e. one strategy per function symbol). This is done by observing which argu-
ments need to be rewritten to be able to match a given rule. An argument that
is needed for matching by most of the rules is added to the strategy, indicating
it needs to be rewritten first. In the case that all arguments of a rule that are
essential for matching are rewritten, this rule is added to the strategy. This
process continues until all rules and arguments are in the strategy.

More formally, let dep(r) be a function that returns the indices of the argu-
ments that need to be rewritten before matching rule r, i.e. (with vars(t) the
variables occurring in t)

dep(f(t1, . . . , tk) → u) = {i : ti 6∈ V ∨ ti ∈
⋃
j 6=i

vars(tj)}

That is, a rule depends on argument i if the ith argument is either a specific
term (not just a variable) or it is a variable that also occurs in another argument.
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Also, let occ(i, Rf ) be a function that returns the number of rules of a set
Rf that require argument i:

occ(i, Rf ) = #{r ∈ Rf : i ∈ dep(r)}

We denote the empty strategy with [] and a set S of argument indices or rewrite
rules prepended to a strategy l by S �c l. Here, �c only adds S to l if S is
not empty (i.e. ∅ �c l = l). A strategy for a set of rules Rf is generated with
strat(Rf , ∅), where strat(R, I) is defined as follows, for any set of rules R ⊆ Rf

and set of indices I ⊆ {1, . . . , ar(f)} (with I the set of argument indices added
to the strategy so far and ↑ the maximum quantifier):

strat(∅, I) = ({1, . . . , ar(f)} \ I) �c []
strat(R, I) = T �c J �c strat(R \ T, I ∪ J) if R 6= ∅

where T = {r ∈ R : dep(r) ⊆ I},
J = {i : i 6∈ I ∧ occ(i, R \ T ) =↑j 6∈I occ(j, R \ T )}

For the if above we can now calculate strat({α, β, γ}, ∅). As all rules depend
on at least one argument, no rules will be added in the first step. And, as both
α and β depend (solely) on the first argument, this argument will be added first.
Thus we get ∅�c {1}�c strat({α, β, γ}, {1}). Then, as the first argument is now
in the strategy, we can add α and β. Doing so means that there is only one rule
left (γ) and it needs both remaining arguments, which we therefore add. This
gives us ∅�c {1}�c {α, β}�c {2, 3}�c strat({γ}, {1, 2, 3}). As only γ remains
to be added we get ∅�c {1}�c {α, β}�c {2, 3}�c {γ}�c ∅�c ∅�c [], which is
[{1}, {α, β}, {2, 3}, {γ}].

Our approach deviates from the just-in-time strategy as defined in [17] in
two ways. First of all, we do not require arguments to be rewritten in order.
This way we basically get the same strategy as before when we permute the
arguments of the if . We also do not preserve in any way the order in which
rules were specified by the user while just-in-time would (as far as a strategy
allows this).

5.2 Normal forms

Unlike innermost rewriting, JITty rewriting does not allow for a simple build
up mechanism (as described in Sect. 4). To avoid rewriting normal forms we
want to tag terms to indicate that they are in normal form (or not). A simple
way is to add an extra function symbol ν, such that ν(t) means that t is in
normal form (which is done in [18]). However, such an addition results in a
time penalty due to additional construction of terms.

Our approach is to introduce extra function symbols fs for each original
function symbol f . Each extra symbol fs has an annotation s indicating which
of its arguments is in normal form. For example, f011 indicates that the second
and third arguments are in normal form. We will write ε for the absence of an
annotation (i.e. f ε is equal to f). Note that having these additional symbols
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does not add extra costs in construction of terms as the construction only differs
in which function symbol is used. And because of the way it is used, normal
forms will always be built up of the original function symbols, thus matching
does not change at all. The only change is the increase of the number of rewrite
methods, which only effects initialisation time and needed (static) memory.

To use these annotations we need to convert the rewrite rules in such a way
that they use the annotations. Given a set of variables N and a term t we
define ψ(t,N) to be the annotated version of t under the assumption that (the
values bound to) the variables of N are in normal form. More precisely (where
[true] = 1 and [false] = 0):

ψ(x,N) = x
ψ(f(t1, . . . , tn), N) = f [t1∈N ]...[tn∈N ](ψ(t1, N), . . . , ψ(tn, N))

Let ar(f) denote the arity of function symbol f , vars(t) the set of variables
occurring in t and depf (r) the indices of arguments of f that the JITty strategy
will have rewritten before trying to apply rewrite rule r. We define a trans-
formation function φ on TRSs such that φ((Σ,→)) = (Σ′,→′), where Σ′ and
→′ are defined as follows:

Σ′ = {fs : f ∈ Σ ∧ s ∈
⋃

0≤i≤ar(f){0, 1}i }
→′ = {fs(t1, . . . , tn) → u′ if c′ : r = f(t1, . . . , tn) → u if c ∧

r ∈ → ∧ s ∈ {ε} ∪ {0, 1}n ∧
N =

⋃
i∈depf (r) ∨ s.i=1 vars(ti) ∧

c′ = ψ(c,N) ∧ u′ = ψ(u,N)
} ∪ {fs → f if true : s 6= ε ∧ fs ∈ Σ′}

This translation adds the annotated function symbols and annotated copies
of the rewrite rules. It makes sure that the right-hand side of rules correctly uses
the annotations based on the annotation of the head symbol of the left-hand
side and which arguments will be rewritten before application. It also adds rules
to remove the annotations.

For these latter rules the code generation has to be adapted such that these
are only applied in case no other rule matches. This way we make sure that
normal forms are always without annotations, which ensures that matching
does not have to consider annotations at all. The function symbols with an
annotation indicating that none of the arguments are in normal form can be
safely replaced by the unannotated version.

To illustrate the translation, we look at the following example. Assume the
following rules (where [] is the empty list and a� l is the list l prepended with
a):

α : len([]) → 0
β : len(a� l) → 1 + len(l)

Given the above transformation, we obtain the following set of rules. Note
that we have annotated the name of the rules as well with the effect that they
have on the annotation of len.
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α : len([]) → 0
α1 : len1([]) → 0
β→1 : len(a� l) → 1 + len1(l)
β1→1 : len1(a� l) → 1 + len1(l)
1→ : len1(l) → len(l)

Note that in practice it might not be feasible to use φ(R) instead of TRS
R because of the exponential increase in size. However, it is often sufficient to
limit the annotations to, say, 3 arguments.

6 Evaluation

We evaluate the implementations of our mCRL2 rewriters by looking at some
benchmarks. These are divided into two parts, viz. benchmarks for rewriting
a single closed term and benchmarks for generating labelled transition systems.
The reason for this division is that LTS generation, at least as it is implemented
in µCRL and mCRL2, uses rewriters in a very specific way.

6.1 LTS generation

The µCRL and mCRL2 toolsets first convert the specification to a symbolic
LTS, which consists of a list of guarded transitions and the effect on the state
these have. Such a guard is an open term that indicates under which valuation
of the variables a transition can happen. To generate all such valuations we
use a form of narrowing [6]; we repeatedly do case distinction on a variable and
rewrite the guard to see if it evaluates to true or false.

As only a small change is made in each step, most of the time the rewriter
will be busy reestablishing that large parts of the guard are still in normal form.
Optimisations that avoid normal form rewriting are actually less effective in this
setting, as they always need to traverse a term at least once to establish that it
is a normal form.

For the LTS benchmarks we have taken four specifications (chatboxt, 1394-
fin, ccp33 and commprot) from the µCRL toolset, converted them to symbolic
LTSs that are easily translatable to LOTOS [10] (for the CADP toolset [8])
and mCRL2. The used specifications differ slightly from the versions in the
µCRL toolset to be able to translate to CADP. Note that, unlike the µCRL
and mCRL2 toolsets, CADP is not specialised in handling these symbolic LTSs,
which can negatively influence their results. All tools were used on the same
machine with 2 gigabytes of memory (of which the tools were only allowed to use
1.5 gigabytes to avoid swapping). Note that we write OoM (out of memory) in
case a tool was terminated because it needed more than the allowed amount of
memory. For this reason we included additional variants of benchmarks limited
to an amount of states that all tools could handle.

Looking at Table 1, we see that our JITty implementation performs better
on average than any of the others. The exact difference depends highly on
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# states CADP µCRL mCRL2
Innermost JITty

chatboxt 65536 1.3s 5.0s 4.0s 3.5s
1394-fin 400 65.3s 0.1s 0.5s 0.4s
1394-fin 371804 OoM 103.8s 212.1s 92.3s
ccp33 7000 25.5s 27.6s 61.8s 8.7s
ccp33 20000 OoM 79.0s 171.9s 26.2s
commprot 700 53.9s 11.0s 12.4s 13.0s
commprot 5000 OoM 77.8s 92.1s 93.0s

Table 1: LTS generation benchmarks

the chosen example, as some depend more heavily on functions that allow for
JITty techniques. In the CADP column we see several OoMs indicating the tool
needed more than the allowed amount of memory.

Our innermost implementation is about two times as slow as µCRL in the,
calculational-wise, heavier cases. This could be either because µCRL also applies
JITty-like techniques in a limited fashion or because their implementation does
not need to deal with applicative terms. The implementation is otherwise very
similar. Given the times in Table 1 it is clear that only in case there is a
significant difference in execution time between the mCRL2 implementations
there is also a significant difference with µCRL. This seems to support the idea
that our innermost rewriter is slower than µCRL because the latter also applies
some JITty techniques.

6.2 Closed term rewriting

To investigate the performance of our rewriters in a more general setting we
look at the benchmarks in Table 2. These benchmarks consist of only a single
closed data term that needs to be rewritten to normal form. In order to test the
rewriters of the LTS generation tools we again use µCRL specifications as before,
only with a single process that can do precisely one transition which has the
term to be rewritten as an argument (such that these tools are effectively only
rewriting that term). In addition to the LTS generation tools we also consider
the functional language tools Maude [5], Glasgow Haskell Compiler (GHC) [11],
Clean [15] and ASF+SDF. For these tools the process part of the specification
is discarded in the conversion.

The benchmarks we use are a naive Fibonacci implementation (fib(32)),
benchmarks as used in [13] (evalexp, evalsym, evaltree) and a binary search
(b.search). Fibonacci and evalsym are mainly calculational benchmarks, eval-
expr differentiates eager and lazy implementations and evaltree is a memory
extensive benchmark. The binary search is a benchmark that takes an increas-
ing function, a value and a bound and searches that function (in the domain
determined by the bound) for the given value. This benchmark is mainly a test
for applicative terms (as the search function takes a function as argument), but
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also requires a lazy implementation for reasonable execution. The function we
use as argument is the Fibonacci function. We write NA (not applicable) in
Table 2 for tools that do not support applicative terms.

Maude GHC Clean ASF CADP µCRL mCRL2
Inner. JITty

fib(32) 23.4s 4.0s 2.6s 2.7s 2.4s 2.3s 4.0s 11.2s
evalexpr 3.3s 0.4s 0.3s OoM 0.5s OoM OoM 5.4s
evalsym 231.3s 18.7s 15.8s 36.3s OoM 19.0s 49.3s 254.2s
evaltree 16.7s OoM 2.1s 1.6s 0.6s 1.0s 1.9s 25.6s
b.search NA 4.5s 2.5s NA NA NA OoM 10.8s

Table 2: Closed term rewriting benchmarks

From the benchmarks in Table 2 we can see that in general the rewriters of
the LTS generators can compete with the fastest rewriters for functional lan-
guages available, which seems to indicate that supporting open term rewriting
and implicit substitution is not a bottleneck. We can also see that our JITty
implementation is often significantly slower than the others and is more com-
parable to Maude, which uses an interpreting rewriter. This is likely due to
the fact that JITty always has to build the result of rule application before
rewriting that term, which is very expensive in our implementation. The mem-
ory extensive evaltree benchmarks, where JITty is about twelve times slower
than our innermost rewriter, seems to support this. Also note that the evalsym
benchmark, meant to test pure calculation speed, favors those that use a lazy
implementation (ASF+SDF and the mCRL2 innermost rewriter are the only
strict innermost rewriters).

7 Conclusion

We have described the implementation of the rewriters of the mCRL2 toolset.
The implementation of the innermost rewriter is very similar to the implemen-
tation of the µCRL rewriter and the rewriter used in ASF+SDF. The second
implementation is that of a compiling JITty rewriter, which is, as far as we
know, the first of its kind.

Benchmarks are given to illustrate the improvement this JITty rewriter is
over the innermost rewriters used for LTS generation. For closed term rewriting
we have shown that our innermost rewriter can compete with the best rewriters
currently available (ignoring the effects of lazy rewriting) and that JITty is a
bit slower. The latter is likely due to the fact that in this implementation more
intermediate terms have to be constructed, which is quite expensive.

The fact that the rewriters used for LTS generation can clearly compete with
the fastest rewriters for functional languages seems to suggest that adapting the
latter to support open term rewriting (which is essential for LTS generation)
should not be a problem. That is, unless these functional languages support

14



additional features with respect to the more basic languages used in process
specifications that are fundamentally in conflict with efficient open term rewrit-
ing. In any case, such an adaptation would allow developers and users of tools
centered around process behaviour and theorem proving (and most likely other
fields as well) to have direct access to the functionality offered by the expertise
of the functional programming community.

Most significant future work will be the improvement of the JITty rewriter
for closed term rewriting and especially the study of the implications of the
restrictions we have put on higher-order rewriting.
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