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Abstract. This paper discusses action abstraction in timed process al-
gebras. It is observed that the leading approaches to action abstraction
in timed process algebra all maintain the timing of actions, even if these
actions are abstracted from.

This paper presents a novel approach to action abstraction in timed
process algebras. Characteristic for this approach is that in abstracting
from an action, also its timing is abstracted from. We define an abstrac-
tion operator and a timed variant of rooted branching bisimilarity and
establish that this notion is an equivalence relation and a congruence.

1 Introduction

One of the main tools in analysing processes in a process-algebraic setting is
abstraction. Abstraction allows for the removal of information that is regarded
as unobservable (or irrelevant) for the verification purpose at hand. Abstraction
is introduced in the form of an action abstraction operator, called hiding, or in
the form of data abstraction through abstract interpretations. In action hiding,
certain action names are made anonymous and/or unobservable by replacing
them by a predefined silent step (also called internal action) denoted by τ .

In the field of untimed process algebra, there is reasonable consensus about
the properties of the silent step. In ACP-style process algebras [1] the notion of
(rooted) branching bisimilarity, as put forward by Van Glabbeek and Weijland in
[2,3], is mostly adopted. The few timed versions of rooted branching bisimilarity
found in the literature (see [4,5,6]) and of weak bisimilarity (see [7,8,9,10]) all
agree on maintaining the timing of actions, even if these actions are abstracted
from. In all of these approaches the passing of time by itself (i.e., without subse-
quent action execution or termination) can be observed. As a consequence, not
as many identifications between processes can be made as is desirable for verifi-
cation purposes. This hinders the verification of correctness of real-time systems
and therefore this situation needs to be improved.

In this paper, we study an action abstraction mechanism that not only ab-
stracts from an action, but also from its timing. We introduce an untimed silent
step into a timed process algebra. We define a timed version of rooted branching
bisimilarity based on this untimed silent step, show that it is an equivalence and
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a congruence, and present a remarkably straightforward axiomatisation for this
notion of equivalence. We give a short account of the identifications between
processes that can be obtained using this equivalence. This is done by showing
simplifications of the PAR protocol using the notions of equivalence from the
literature and the notion introduced in this paper.

It should be mentioned that when studying timed process algebras (or timed
automata for that matter), one encounters a number of different interpretations
of the interaction between actions and time. There are the so-called two-phase
models, where the progress of time is modeled separately from action execution,
and there is the time-stamped setting, where time progress and action execution
are modeled together. Two-phase models are used in [11], and time-stamped
models are found in timed μCRL [12], for example. In this paper, we study timed
rooted branching bisimilarity in the context of an absolute time, time-stamped
model.

Structure. First, we introduce a simple timed process algebra with absolute
timing and a time-stamped model (Sect. 2). This process algebra serves as a
vehicle for our discussions on abstraction and equality of processes. It contains
primitives that are fundamental to virtually every timed process algebra. In
Sect. 3, we discuss the notions of timed rooted branching bisimilarity as they
are encountered in the literature. In Sect. 4, we adapt the timed process algebra
to incorporate our ideas for abstraction and equality for timed processes inter-
preted in a time-stamped model. In Sect. 5, we illustrate the consequences of our
definitions on the PAR protocol. In Sect. 6, we present axioms for timed strong
bisimilarity and timed rooted branching bisimilarity. In Sect. 7, we discuss the
possibilities and impossibilities of adapting our notions to other settings in timed
process algebra from the literature. Section 8 wraps up the paper.

2 The Universe of Discourse

In this section, we introduce a simple time-stamped process algebra without
abstraction. This process algebra serves well for a more formal exposition of our
discomfort with the existing ways of dealing with abstraction in timed process
algebra and for a discussion of the possible solutions. Also, this process algebra
will be used for the treatment of the chosen solution.

The timed process algebra presented in this section, BSP@
abs (for Basic Se-

quential Processes with absolute time and time-stamping), is an extension of
the process theory BSP from [13] with absolute-timing and time-stamping (both
syntactically and semantically) inspired by the process algebra timed μCRL [12]1.

We first present the starting point of our deliberations. We assume a set Time
that is totally ordered by ≤ with smallest element 0 that represents the time
domain2. We also assume a set Act of actions, not containing τ .
1 Note that in the original semantics of timed μCRL [14], a two-phase model is used

with states consisting of a closed process term and a moment in time, and separate
action transitions a→ and a time transition ι→.

2 It does not matter for the treatment whether this time domain is discrete or dense.
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The signature of the process algebra BSP@
abs consists of the following constants

and operators:

– for each t ∈ Time, a timed deadlock constant 0@t. The process 0@t idles up
to time t and then deadlocks.

– for each t ∈ Time, a timed termination constant 1@t. The process 1@t idles
up to time t and then terminates successfully.

– for each a ∈ Act and t ∈ Time, an action prefix operator a@t._. The process
a@t.p represents the process that idles up to time t, executes action a at that
time and after that behaves as process p insofar time allows.

– the alternative-composition operator _ + _. The process p + q represents
the nondeterministic choice between the processes p and q. The choice is
resolved by the execution of an action or an occurrence of a termination.

– for each t ∈ Time, a time-initialisation operator t � _. The process t � p
is p limited to those alternatives that execute their first action not before
time t.

Terms can be constructed using variables and the elements from the signature.
Closed terms are terms in which no variables occur. We decide to allow the
execution of more than one action at the same moment of time (in some order).
There are no fundamental reasons for this choice: we could equally well have
adopted the choice to disallow such urgent actions.

Next, we provide a structured operational semantics for the closed terms from
this process algebra. We define the following transition relations and predicates:

– a time-stamped action-transition relation _ a→t _ (with a ∈ Act and t ∈
Time), representing the execution of an action a at time t.

– a time-stamped termination predicate _ ↓t (with t ∈ Time), representing
successful termination at time t.

– a time-parameterised delay predicate _ �t (with t ∈ Time), representing
that a process can idle until time t (at least).

The reason for including the delay predicate is to discriminate between dif-
ferently timed deadlocks: 0@3 �3, whereas 0@2 ��3. These transition relations
and predicate are defined by means of a so-called term deduction system [15].
The deduction rules are presented in Table 1. In this table and others in the rest
of this paper, x, x′, y and y′ are variables representing arbitrary process terms,
a ∈ Act is an action name, I ⊆ Act and t, u ∈ Time.

Note that the time-initialisation operator is used in the structured operational
semantics to impose upon a process the absolute time point that has been reached
by previous activity.

Timed strong bisimilarity (as defined in [12], for example) is a congruence for
all operators from this process algebra. One can quite easily obtain a sound and
complete axiomatisation of timed strong bisimilarity. The details are omitted as
they are of no importance to the goal of this paper.
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Table 1. Structured Operational Semantics of BSP@
abs

0@t �u
[u ≤ t]

1@t ↓t 1@t �u
[u ≤ t]

a@t.x
a→t t � x

a@t.x �u
[u ≤ t]

x
a→t x′

x + y
a→t x′

y + x
a→t x′

x ↓t

x + y ↓t

y + x ↓t

x �t

x + y �t

y + x �t

x
a→u x′

t � x
a→u x′ [t ≤ u]

x ↓u

t � x ↓u
[t ≤ u]

t � x �u
[u ≤ t]

x �u

t � x �u

3 Abstraction and the Timed Silent Step

In order to facilitate abstraction of actions, usually a special atomic action
τ �∈ Act is assumed that represents an internal action or silent step. Also, an
abstraction operator τI (for I ⊆ Act) is used for specifying which actions need
to be considered internal. This leads to the following extensions to the signature
of the process algebra:

– for each t ∈ Time, a silent step prefix operator τ@t._. The process τ@t.p
represents the process that idles up to time t, executes silent step τ at that
time and after that behaves as process p insofar time allows.

– for each I ⊆ Act, an abstraction operator τI . The process τI(p) represents
process p in which all actions from the set I are made invisible (i.e., replaced
by silent step τ).

To express execution of a silent step at a certain time t the predicate _ τ→t _
is used. The silent step prefix operator has precisely the same deduction rules as
the action prefix operator (with a replaced by τ). The deduction rules for the
abstraction operator are given below.

x
a→t x′

τI(x) a→t τI(x′)
[a �∈ I]

x
a→t x′

τI(x) τ→t τI(x′)
[a ∈ I]

x
τ→t x′

τI(x) τ→t τI(x′)

x ↓t

τI(x) ↓t

x �t

τI(x) �t

Again, congruence of timed strong bisimilarity is obvious and obtaining a sound
and complete axiomatisation of timed strong bisimilarity is not difficult either.

Timed Rooted Branching Bisimilarity. In the rest of this section, we discuss
several timed versions of the well-known notion of rooted branching bisimilarity
[2,3]. We refer to the relevant literature for definitions of these notions. We
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only present some characteristic equalities and inequalities between processes to
illustrate the notions.

In [4, Chapter 6], Klusener defines notions of timed rooted branching bisimi-
larity for a timed process algebra in a setting that does not allow for consecutive
actions at the same moment in time, i.e., non-urgent actions. Two semantics and
equivalences are defined, both in a setting with time-stamped action transitions.
The first semantics, the so-called idle semantics employs idle transitions to model
time passing. The second, called the term semantics, uses an ultimate delay pred-
icate instead. Characteristic for the equivalences is that an action transition a
at time t in one process may be mimicked in another process by a well-timed
sequence (i.e., a sequence in which the timing of the subsequent actions does not
decrease) of silent steps that is ultimately followed by an a-transition at time t.
The intermediate states need to be related with the original state (at the right
moment in time). Klusener shows that in his setting these two semantics and
equivalences coincide. In almost the same setting3, using the term semantics,
Fokkink proves a completeness result for the algebra of regular processes [16,17].
By means of the following examples we will discuss the equivalences of Klusener.
For these examples it is possible to eliminate the abstraction operator from the
process terms. We have not done so in order to be able to use these examples
again in their current form in the next section (where we have a slightly different
syntax).

Example 1 (No-Choice Silent Step). The three processes τ{b}(a@1.b@2.c@4.0@5),
τ{b}(a@1.b@3.c@4.0@5) and a@1.c@4.0@5 are obviously considered equal. Thus, the
timing of the action that is hidden is of no importance insofar it does not disallow
other actions from occurring (due to ill-timedness).

Example 2 (Time-Observed Silent Step). The processes τ{b}(a@1.(b@2.(c@3.0@4+
d@3.0@4)+d@3.0@4)) and a@1.(c@3.0@4+d@3.0@4) are distinguished by the notion
of timed rooted branching bisimilarity from [4, Chapter 6]. The reason is that
in the first process at time 2 it may be determined that the d will be executed
at time 3, while in the latter process term the choice between the c and the d at
3 can not be done earlier than at time 3.

Example 3 (Swapping). The processes τ{b}(a@1.(b@2.c@3.0@4 + d@3.0@4)) and
τ{b}(a@1.(c@3.0@4+b@2.d@3.0@4)) are considered equal with respect to Klusener’s
notion of equality, since in both processes it is decided at time 2 whether the c
or the d will be executed at time 3.

It is interesting to note that, if one considers Klusener’s definition of timed
rooted idle branching bisimilarity in a setting in which urgent actions are al-
lowed, the swapping of silent steps as portrayed in this example does not hold
anymore. With timed rooted branching bisimilarity as defined for the term se-
mantics though, it remains valid. This is due to the fact that the latter notion
explicitly limits the behaviour of processes.
3 Fokkink uses a relative-time syntax and semantics and defines the ultimate delay

predicate slightly different.
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Example 4 (Time-Choice). According to [4] the processes τ{b}(a@1. (b@3.0@4 +
c@2.0@4)) and a@1.(0@4 + c@2.0@4) are equal, since the passage of time already
decides at time point 2 whether or not the alternative c@2.0@4 occurs or not.

Baeten and Bergstra introduce the silent step to relative time, absolute time and
parametric time (i.e., a mixture of both relative and absolute time) versions of
ACP with discrete time in [5]. A difference with the work of Klusener is that
time steps are represented explicitly in the syntax in [5]. In [18], a complete
axiomatisation for timed rooted branching bisimilarity is provided, for a variant
of this theory. With respect to the four examples presented before, the only
difference between Klusener’s notion and Baeten and Bergstra’s notion is that
the latter does not consider the processes from Example 3 (Swapping) equal.

In [6], Van der Zwaag defines a notion of timed branching bisimilarity for
a process algebra that has almost the same syntax and semantics as ours. In
the setting studied by Van der Zwaag there is no successful termination. In
[19], Fokkink et al. show that the notion of timed branching bisimilarity as put
forward by Van der Zwaag is not an equivalence for dense time domains and
therefore they present a stronger notion of timed branching bisimilarity that is
an equivalence indeed. Also, the definitions are extended to include successful
termination. These notions of timed rooted branching bisimilarity are similar to
that of Baeten and Bergstra for the examples presented before.

The way in which abstraction of actions leads to very precisely timed silent
steps can be considered problematic (from a practical point of view). This was
also recognised by Baeten, Middelburg and Reniers in [20] in the context of a
relative-time discrete-time process algebra with two-phase time specifications.
The equivalences as described above are not coarse enough in practical cases
such as the PAR protocol. An attempt is made to establish a coarser equivalence
(called abstract branching bisimilarity) that “treats an internal action always as
redundant if it is followed by a process that is only capable of idling till the next
time slice.” This leads to an axiom (named DRTB4) of the form τ{a}(a@t.x) =
τ{a}(t � x) (in a different syntax).

Although we support the observation of the authors from [20] that a coarser
notion of equivalence is needed, we have a major problem with the treatment of
this issue in [20]. The authors have sincere difficulties in defining the equivalence
on the structured operational semantics. This difficulty is ultimately solved by
using the (standard) definition of rooted branching (tail) bisimilarity from [18]
in combination with a structured operational semantics that is a silent-step-
saturated version of the original semantics.

4 Untimed Silent Step

In this section, we present a novel abstraction mechanism in timed process al-
gebra that is inspired by the opinion that the timing of a silent step as such is
not observable. Therefore, one might consider defining an abstraction operator
that abstracts from an action and from its timing. One should be careful though,
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that abstraction from the timing of action a may not result in an abstraction of
the consequences of this timing of a for the rest of the process!

In the next section, we formally present our novel approach to action abstrac-
tion in timed process algebras. First we give the consequences of our intuition
about the equality (called timed rooted branching bisimilarity, denoted by ↔rb ,
see Sect. 4.2 for a definition) of the example processes from the previous section.

The timing of the action that is hidden is of no importance insofar it does
not disallow other actions from occurring (due to ill-timedness). Therefore, the
processes from Example 1 (No-Choice) should be considered equal:

τ{b}(a@1.b@2.c@4.0@5) ↔rb τ{b}(a@1.b@3.c@4.0@5) ↔rb a@1.c@4.0@5

The processes from Example 2 (Time-Observed Silent Step) are equal in our
setting since we do not wish to consider the timing of the internal step relevant:

τ{b}(a@1.(b@2.(c@3.0@4 +d@3.0@4)+d@3.0@4)) ↔rb a@1.(c@3.0@4 +d@3.0@4)

The processes from Example 3 (Swapping) are different processes, since by
executing the silent step, an option that was there before has disappeared:

τ{b}(a@1.(b@2.c@3.0@4 + d@3.0@4)) �rb τ{b}(a@1.(c@3.0@4 + b@2.d@3.0@4))

Since we do not allow to take the timing of the abstracted action into account,
we cannot have the equality of the processes from Example 4 (Time-Choice):

τ{b}(a@1.(b@3.0@4 + c@2.0@4)) �rb a@1.(0@4 + c@2.0@4)

In contrast with the other equivalences discussed in this paper, the process
τ{b}(a@1.(b@3.0@4 + c@2.0@4)) can only be ‘simplified’ to a@1.(τ.0@4 + c@2.0@4).
Thus the silent step remains.

In our opinion, in [20] too many silent steps can be omitted. Consider for ex-
ample the process τ{a}(a@1.0@2+b@3.0@4). In [20], it is considered to be equal to
b@3.0@4. In our opinion, the execution of the internal step disables the execution
of action b altogether.

4.1 Abstraction Using the Untimed Silent Step

We propose to extend the process algebra from Sect. 2 with the following primi-
tives instead of the timed silent action prefix operators and abstraction operator
from Sect. 3:

– the silent step prefix operator τ._. The process τ.p performs an internal
action (not at any specific time) and thereafter behaves as p. Note that the
occurrence of such an internal action cannot result in disabling an action
from p.

– for each I ⊆ Act, the abstraction operator τI . The process τI(p) represents
process p where all actions from the set I are made invisible (replaced by
the untimed silent step τ). It should be noted that the consequences of the
timing of the abstracted action are not abstracted from.
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In the structured operational semantics, we add a relation _ τ→ _ that rep-
resents the execution of an untimed silent step. For alternative composition and
time initialisation we add deduction rules for this new transition relation (the first
two deduction rules in Table 2). In the second deduction rule for the abstraction
operator one can see that a timed action is replaced by an untimed silent step

Table 2. Structured Operational Semantics of untimed silent step and abstraction
operator

x
τ→ x′

x + y
τ→ x′ y + x

τ→ x′
x

τ→ x′

t � x
τ→ t � x′ τ.x

τ→ x

x �t

τ.x �t

x
a→t x′

τI(x) a→t τI(x′)
[a �∈ I ]

x
a→t x′

τI(x) τ→ τI(x′)
[a ∈ I ]

x
τ→ x′

τI(x) τ→ τI(x′)

x ↓t

τI(x) ↓t

x �t

τI(x) �t

in case the action is to be abstracted from. Also note that the consequences of
the timing of the action are imposed on the rest of the process by means of the
time-initialisation operator in the deduction rule for action-transitions of the
action prefix operator (in Table 1). This means that the process x′ incorporates
the fact that time t has been reached.

Example 5. Somewhat surprisingly, the process p = a@2.τ{b}(b@1.0@4) is not ill-
timed. This is a consequence of our decision that the timing of abstracted actions
is not observable. Thus the process p is equal to a@2.0@4 and of course also to
a@2.τ{b}(b@3.0@4) (which can hardly be considered ill-timed).

4.2 Timed Rooted Branching Bisimilarity

In the following definition we use the notation p ⇒ q to denote that q can be
reached from p by executing an arbitrary number (possibly zero) of τ -transitions.

The notation p
(τ)→ q means p

τ→ q or p = q.

Definition 1 (Timed Rooted Branching Bisimilarity). Two closed terms
p and q are timed branching bisimilar, notation p ↔b q, if there exists a sym-
metric binary relation R on closed terms, called a timed branching bisimulation
relation, relating p and q such that for all closed terms r and s with (r, s) ∈ R:

1. if r
a→t r′ for some a ∈ Act, t ∈ Time and closed term r′, then there exist

closed terms s∗ and s′ such that s ⇒ s∗ a→t s′, (r, s∗) ∈ R and (r′, s′) ∈ R;



Action Abstraction in Timed Process Algebra 295

2. if r
τ→ r′ for some closed term r′, then there exist closed terms s∗ and s′

such that s ⇒ s∗
(τ)→ s′, (r, s∗) ∈ R and (r′, s′) ∈ R;

3. if r ↓t for some t ∈ Time, then there exists a closed term s∗ such that
s ⇒ s∗ ↓t and (r, s∗) ∈ R;

4. if r �t for some t ∈ Time, then there exists a closed term s∗ such that
s ⇒ s∗ �t and (r, s∗) ∈ R.

If R is a timed branching bisimulation relation, we say that the pair (p, q)
satisfies the root condition with respect to R if

1. if p
a→t p′ for some a ∈ Act, t ∈ Time and closed term p′, then there exists

a closed term q′ such that q
a→t q′ and (p′, q′) ∈ R;

2. if p
τ→ p′ for some closed term p′, then there exists a closed term q′ such

that q
τ→ q′ and (p′, q′) ∈ R;

3. if p ↓t for some t ∈ Time, then q ↓t;
4. if p �t for some t ∈ Time, then q �t.

Two closed terms p and q are called timed rooted branching bisimilar, notation
p ↔rb q, if there is a timed branching bisimulation relation R relating p and q
such that the pairs (p, q) and (q, p) satisfy the root condition with respect to R.

Note that we have actually defined a timed version of the notion of semi-
branching bisimilarity of [21].

4.3 Properties of Timed Rooted Branching Bisimilarity

In this section, we show that timed rooted branching bisimilarity as defined in
the previous section is indeed an equivalence. Moreover we show that it is a
congruence for the rather restricted set of operators introduced. Proofs of the
theorems given in this section can be found in [22].

Theorem 1. Timed rooted branching bisimilarity is an equivalence relation.

Theorem 2. Timed strong bisimilarity and timed rooted branching bisimilar-
ity are congruences for all operators from the signature of the process algebra
BSP@

abs.

Furthermore, obviously timed rooted branching bisimilarity identifies strictly
more processes than timed strong bisimilarity does.

Theorem 3. Timed strongly bisimilar processes are timed rooted branching
bisimilar: i.e., ↔ ⊂ ↔rb .

From the examples presented in the previous sections, we can easily conclude
that our notion of equality is incomparable with the notions from Klusener [4],
Baeten and Bergstra [5] and Van der Zwaag [6]. We claim that the notion of
abstract branching bisimilarity from [20] is coarser than ours.
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5 Case Study: PAR Protocol

In [20] the Positive Acknowledgement Retransmission protocol is used to illus-
trate the need for a coarser equivalence. In this paper, we will use the same pro-
tocol to illustrate our notion of timed rooted branching bisimilarity. An informal
description of the protocol can be found in [20]. For comparison, we present a
linearised version of the protocol in which the internal communications are ab-
stracted from and as many silent steps as possible have been removed/omitted
using the notion of abstraction and timed rooted branching bisimilarity from [5].
This result is obtained by translating the result from [20] to our setting. Note
that we have used notations such as

∑

t′
p that describe a potentially infinite al-

ternative composition consisting of one alternative of p for each t′. We refrain
from giving operational semantics for this operator, called summation [12] or
alternative quantification [23].

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′
.Yd,b,t+t′+tS

Yd,b,t = τ@t+tK .s2(d)@t+tK+tR .Zd,b,t+tK+tR+t′
R

+
∑

k≤tK

τ@t+k.Yd,b,t+t′
S

Zd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S−tK−tR−t′

R

Ud,b,t = τ@t+tK .Vd,b,t+tK+t′
R

+
∑

k≤tK

τ@t+k.Ud,b,t+t′
S

Vd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S−tK−t′

R

Below, we present a linearised version based on the notion of abstraction and
timed rooted branching bisimilarity as proposed in this paper:

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′
.Yd,b,t+t′+tS

Yd,b,t = τ.s2(d)@t+tk+tR .U ′
d,b,t,tR

+ τ.Yd,b,t+t′
S

U ′
d,b,t,u = τ.Xb,t+tK+u+t′

R+tL
+ τ.U ′

d,b,t+t′
S,0

The silent steps that are left are essential. The silent steps in Y determine
whether or not an error occurred in channel K and those in U ′ determine the
same for channel L. As these errors result in an additional delay before the next
action occurs, they are not redundant. In [22] a more detailed discussion of this
case study can be found.
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6 Axioms for Timed Rooted Branching Bisimilarity

In Table 3 we present axioms for timed strong bisimilarity. The axioms (A1)-(A3)
express some standard properties of alternative composition. Axiom (WT) (for
well-timedness) describes that the time that is reached by executing an action
is passed on to the subsequent process. The axioms (A6a)-(A6d) describe the
properties of timed deadlocks, especially the circumstances under which they
can be removed from the process description. An important equality that can
be derived for closed terms p is p + 0@0 = p.

Axioms (I1)-(I7) describe how the time-initialisation operator can be elimi-
nated from terms. Note that the silent step neglects this operator (axiom (I6)).
Axioms (H1)-(H6) describe how the abstraction operator can be eliminated. Note
that the timing of an action that is abstracted from is passed on to the rest of
the process (axiom (H4)). The time-initialisation operator in the right-hand side
of axiom (H3) is needed in order to enforce the timing restriction from the action
prefix before applying further abstractions.

Table 3. Axioms for timed strong bisimilarity and timed rooted branching bisimilarity

(A1) x + y = y + x (A6a) 0@t + 0@u = 0@max(t,u)

(A2) (x + y) + z = x + (y + z) (A6b) u ≤ t ⇒ 1@t + 0@u = 1@t

(A3) x + x = x (A6c) u ≤ t ⇒ a@t.x + 0@u = a@t.x

(WT) a@t.x = a@t.t � x (A6d) u ≤ t ⇒ τ.(x + 0@t) + 0@u = τ.(x + 0@t)

(I1) t � 0@u = 0@max(t,u) (H1) τI(0@t) = 0@t

(I2) u < t ⇒ t � 1@u = 0@t (H2) τI(1@t) = 1@t

(I3) u ≥ t ⇒ t � 1@u = 1@u

(I4) u < t ⇒ t � a@u.x = 0@t (H3) a �∈ I ⇒ τI(a@t.x) = a@t.τI(t � x)
(I5) u ≥ t ⇒ t � a@u.x = a@u.x (H4) a ∈ I ⇒ τI(a@t.x) = τ.τI(t � x)
(I6) t � τ.x = τ.t � x (H5) τI(τ.x) = τ.τI(x)
(I7) t � (x + y) = t � x + t � y (H6) τI(x + y) = τI(x) + τI(y)

We claim that the axioms from Table 3 are sound and complete for timed
strong bisimilarity on closed terms. These axioms are (of course; see Theorem
3) also valid for timed rooted branching bisimilarity. In Table 4, one additional
axiom is presented for timed rooted branching bisimilarity. The reader should
notice that this axiom resembles the untimed axiom for rooted branching bisim-
ilarity a.(τ.(x + y) + x) = a.(x + y) meticulously. Also, it is expected that the
axioms from both tables provide a sound and complete axiomatisation of timed
rooted branching bisimilarity on closed terms.
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Table 4. Axiom for timed rooted branching bisimilarity

(B) a@t.(τ.(x + y) + x) = a@t.(x + y)

7 Other Timed Process Algebra Settings

The process algebra that we have chosen as our universe of discourse can be clas-
sified (both syntactically and semantically) as an absolute-time time-stamped
process algebra. As mentioned before, in the literature there are some other ver-
sions available, with respect to both the syntax used and the semantics adopted.
In this section, we discuss, with respect to the semantics, how the abstraction
technique presented here for an absolute-time time-stamped process algebra can
be carried over to other types of timed process algebras and what problems are
expected to arise in doing so.

In a setting where the time-stamping mechanism uses relative time the treat-
ment becomes even simpler. In such a setting a@t.p means that a is to be executed
t time after the execution of the previous action (or after the conception of the
process). As a consequence of this relative-timing the problem of ill-timedness is
avoided. Therefore, the time-initialisation operator can be left out. Instead, one
needs to have a mechanism for updating the relative time-stamp of the initial
actions of the subsequent process due to abstraction:

x
a→t x′ a ∈ I

τI(x) τ→ t � τI(x′)

where t � p means that t time has to be added to the time-stamp of the first
visible action from p. For example 3 � a@5.p behaves as a@8.p. An example of
such an operator is the time shift operator (t)_ (also with negative t!) that has
been used by Fokkink for defining timed branching bisimilarity in [16].

We have chosen to carry out our deliberations in a time-stamped setting be-
cause this setting allows for a very natural definition of the abstraction operator
since the timing of the action (before abstraction) and the action itself are tightly
coupled in the model. To illustrate the difficulties that arise in defining abstrac-
tion in a two-phase model, we look at the following processes (in the syntax of
[24,25]). Note that σ._ is a time step prefix operator and a._ is an immediate
action prefix operator.

a

σ
a

τ
σ

a

b

a σ

a

b

Fig. 1. Processes a.(σ.a.0 + τ.σ.(a.0 + b.0)) and a.σ.(a.0 + b.0)
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As we have discussed in Sect. 4, we consider these processes equivalent. How-
ever, to express this in an equivalence, we need to be able to relate the states
of both processes. In the diagram above one can see that the first process can
make a time transition that results in a state (the black one) that has no cor-
responding state in the second process. The essence of this problem is that one
tries to relate states that are reached solely by time steps such as the black one.
We thus believe the solution is to not necessarily relate such states, even if they
exist.

8 Concluding Remarks

In this paper, we have introduced a notion of abstraction that abstracts from
the identity of an action as well as its timing, resulting in an untimed silent
step. We have developed an accompanying notion of equality of processes, also
called timed rooted branching bisimilarity. We have shown that this notion is
an equivalence relation and a congruence for all operators considered in this
paper and as such may be a meaningful tool in analysing and verifying systems.
A first experiment, on the PAR protocol, indicates that our notions allow for a
much clearer and smaller representation of the abstract system than the standard
notions do. An axiomatisation of timed rooted branching bisimilarity for closed
process terms is given with an axiom for the removal of untimed silent steps that
resembles the well-known axiom from untimed process algebra.

In this paper, we have made many claims about the timed process algebra
with untimed silent steps. Of course, these claims need to be substantiated fur-
ther. Also, it is worthwhile to study our notion of abstraction in other timed
settings, most notably those with relative timing and where timing is described
by separate timing primitives (decoupled from actions) as in [11] and most other
mainstream timed process algebras.

We have illustrated the differences and similarities between the different def-
initions of timed rooted branching bisimilarity from literature and the version
introduced in this paper by means of examples only. A more thorough compari-
son is needed. Also, a comparison with timed versions of weak bisimilarity (e.g.,
[7,8,9,10]) should be performed.

In order to illustrate that our restriction to the limited set of operators is not
inspired by fundamental limitations, in [22], we have extended the timed process
algebra with sequential composition and parallel composition as these operators
are frequently encountered in timed process algebras in the ACP community.
It turns out that the deduction rules are standard. Also it is shown that timed
rooted branching bisimilarity as defined in this paper in a congruence for those
operators.

The success of an abstraction mechanism and notion of equality not depend
only on the theoretical properties (though important) of these notions, but much
more so on the practical suitability of these notions. Therefore, we need to per-
form more case studies to observe whether these notions contribute to a bet-
ter/easier verification of correctness and/or properties of relevant systems. In
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this direction, we are also interested in a weaker version of the notion of equiv-
alence presented in this paper that additionally considers the processes from
Example 4 (Time-Choice) equal.

We are, in line with our previous work ([24,25]), very interested in obtaining
a collection of theories that are nicely related by means of conservativity results
and embeddings. Therefore, it is interesting to extend the rather limited timed
process algebra from this paper with untimed action prefix operators a._ in order
to formally study, in one framework, the relationship between rooted branching
bisimilarity on untimed processes and our timed version.

A complementary way of specifying a timed system is by means of a timed
(modal) logic. It is worthwhile to get a deeper understanding of our notion of
action abstraction and timed rooted branching bisimilarity by considering the
relationship with modal logics for timed systems as has been done for strong
bisimilarity [26] and Hennessy-Milner logic [27]. We have good hope that the
majority of the logics that are used for the specification of properties of timed
systems are preserved by our notion of timed rooted branching bisimilarity.

Acknowledgements. We acknowledge useful comments from Jos Baeten, Pieter
Cuijpers, Wan Fokkink, Jan Friso Groote, Bas Luttik, Bas Ploeger, Yaroslav
Usenko and Tim Willemse.
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