Process Algebra with Local Communication

Muck van Weerdenburg

FACS’07 September 21, 2007
Outline

Introduction
 Process Algebra
 Parallelism
 Global Communication

Local communication
 Extended Merge?
 Communication Operator
 Multi-actions
 Advantages
 Example

What’s Next?
We use **process algebra** to model processes such that we can, for example, verify properties.

The focus is usually on **interaction**.
Processes p, q, \ldots consist of:

- *actions* a, b, \ldots and

- *inaction* (or *deadlock*) δ, combined with

- operators, such as
 - the *sequential composition* \cdot, and
 - the *alternative composition* \div.

For example, $a \cdot (b + c)$ is a process that first does an a followed by either a b or a c.
Introduction - Parallelism

To put processes in parallel we have the merge \parallel.

The merge interleaves the actions of both parameters.

\[
a \parallel b = (a \cdot b) + (b \cdot a)
\]

\[
a \parallel (b \cdot c) = (a \cdot b \cdot c) + (b \cdot ((a \cdot c) + (c \cdot a)))
\]

\[
a \parallel (b + c) = (a \cdot (b + c)) + (b \cdot a) + (c \cdot a)
\]
Introduction - Parallelism

The merge can be axiomatised with the *left merge* \downarrow.

The left merge is similar to the merge, but ensures that the left argument performs the first action.

We have that: $p \parallel q = (p \downarrow q) + (q \downarrow p)$
Introduction - Global Communication

For communication we typically add the communication merge \parallel.

\[p \parallel q = (p \parallel q) + (q \parallel p) + (p \parallel q) \]

CCS-style: \((a \cdot p) \parallel (\overline{a} \cdot q) = \tau \cdot (p \parallel q)\)

ACP-style: \((a \cdot p) \parallel (b \cdot q) = \gamma(a, b) \cdot (p \parallel q)\)

\(\gamma\) is the communication function
Introduction - Global Communication (ACP)

In ACP, a global communication function γ is defined.

Either a and b communicate (to an action c): $\gamma(a, b) = c$

Or they do not communicate: $\gamma(a, b) = \delta$
Introduction - Global Communication (ACP)

Assume two different companies C_1 and C_2 that develop components.

The component of C_1 requires r and s to communicate.
Simply putting the components of C_1 and C_2 together in a systems possibly breaks their functionality.

This can only be solved by renaming the internal actions of the components!
Introduction - Global Communication (ACP)

Global communication breaks compositionality.

Conceptual oddity: actions can happen simultaneously, but must communicate to do so.

(As it is typically used, multi-way communication is elaborate.)
Outline

Introduction
 Process Algebra
 Parallelism
 Global Communication

Local communication
 Extended Merge?
 Communication Operator
 Multiactions
 Advantages
 Example

What’s Next?
Local Communication

For a compositional language we need local communication.

Local communication only defines communication where it is used.

How to define local communication?
Local Communication - Extended Merge?

As parameter to the \textit{merge} : \(p \parallel \{a|b\rightarrow c\} q \) ?

Very similar to ACP, but \textit{every} parallel operator must contain communication.

Nesting is tricky:

\[
(p \parallel \{a|b\rightarrow c\} q) \parallel \{d|e\rightarrow f\} r \quad \text{vs.} \quad p \parallel \{a|b\rightarrow c\} (q \parallel \{d|e\rightarrow f\} r).
\]

This is more a \textit{theoretical} solution.
Local Communication - Communication Operator

We separate the concepts of parallelism and communication!

The merge only takes care of “interleaving”.

A new \textit{communication operator} Γ_C takes care of communication.
Local Communication - Communication Operator

We want a and b to communicate.

$$\Gamma_{\{a|b\rightarrow c\}}(a \parallel b) = \Gamma_{\{a|b\rightarrow c\}}((a \cdot b) + (b \cdot a)) = ?? c ??$$

The merge no longer takes care of communication, but now it has to facilitate communication.
We need true concurrency; the merge should not just interleave processes.

Actions must be able to occur simultaneously: multiactions.

A multiaction is a bag/multiset of actions. E.g. \(\langle a, b, b \rangle \).

(Instead of action \(a \) we now write the singleton multiaction \(\langle a \rangle \).)
Local Communication - Multiactions

Instead of adding a communication merge we add a synchronisation operator $|$.

\[p \parallel q = (p \sqcup q) + (q \sqcup p) + (p \mid q) \]

With \((\langle a, b \rangle \cdot p) \mid (\langle b, c \rangle \cdot q) = \langle a, b, b, c \rangle \cdot (p \parallel q)\).

\[
\Gamma_{\{a|b \rightarrow c\}}(\langle a \rangle \parallel \langle b \rangle) = \Gamma_{\{a|b \rightarrow c\}}((\langle a \rangle \cdot \langle b \rangle) + (\langle b \rangle \cdot \langle a \rangle) + \langle a, b \rangle) \\
= (\langle a \rangle \cdot \langle b \rangle) + (\langle b \rangle \cdot \langle a \rangle) + \langle c \rangle
\]
Local Communication - Advantages

Our process algebra is compositional and has true concurrency.

Multi-way communication is much easier than before:

\[\nabla \{a|b|c|d\} (\Gamma \{a|b|c|d\rightarrow e\} (a \parallel b \parallel c \parallel d)) = e \]

The empty multiaction \(\langle \rangle \) is the silent step \(\tau \)!

\[\langle a, b, b \rangle \mid \langle \rangle = \langle a, b, b \rangle \]

\[\tau_{\{a\}} (\tau_{\{b\}} (\langle a, b, b \rangle)) = \tau_{\{a\}} (\langle a \rangle) = \langle \rangle \]
Local Communication - Example
Outline

Introduction
 Process Algebra
 Parallelism
 Global Communication

Local communication
 Extended Merge?
 Communication Operator
 Multiactions
 Advantages
 Example

What’s Next?
What’s Next? mCRL2!

mCRL2 is LoCo with:

- slightly different syntax ($a | b | c$ vs. $\langle a, b, c \rangle$)
- higher-order data language (incl. predefined parts)
- time ($a^{@5}$)
- a cross-platform toolset

Info and downloads at http://www.mcrl2.org/.
Thank you for your attention!