
Process Algebra with Local Communication

Muck van Weerdenburg

FACS’07 September 21, 2007

Outline

Introduction
Process Algebra
Parallelism
Global Communication

Local communication
Extended Merge?
Communication Operator
Multiactions
Advantages
Example

What’s Next?

Introduction - Process Algebra

We use process algebra to model processes such that we can, for
example, verify properties.

The focus is usually on interaction.

Introduction - Process Algebra

Processes p, q, . . . consist of:

• actions a, b, . . . and

• inaction (or deadlock) δ, combined with

• operators, such as
• the sequential composition ·, and

• the alternative composition +.

For example, a · (b + c) is a process that first does an a
followed by either a b or a c .

Introduction - Parallelism

To put processes in parallel we have the merge ‖.

The merge interleaves the actions of both parameters.

a ‖ b = (a · b) + (b · a)

a ‖ (b · c) = (a · b · c) + (b · ((a · c) + (c · a)))

a ‖ (b + c) = (a · (b + c)) + (b · a) + (c · a)

Introduction - Parallelism

The merge can be axiomatised with the left merge T.

The left merge is similar to the merge, but ensures that the left
argument performs the first action.

We have that: p ‖ q = (p T q) + (q T p)

Introduction - Global Communication

For communication we typically add the communication merge |.

p ‖ q = (p T q) + (q T p) + (p | q)

CCS-style: (a · p) | (a · q) = τ · (p ‖ q)

ACP-style: (a · p) | (b · q) = γ(a, b) · (p ‖ q)

γ is the communication function

Introduction - Global Communication (ACP)

In ACP, a global communication function γ is defined.

Either a and b communicate (to an action c): γ(a, b) = c

Or they do not communicate: γ(a, b) = δ

Introduction - Global Communication (ACP)

Assume two different companies C1 and C2 that develop
components.

Company C1 Company C2

s
A S

r
S

r
A

s

The component of C1 requires r and s to communicate.

Introduction - Global Communication (ACP)

s
A S

r

S
r

A
s

Simply putting
the components of
C1 and C2 together in a
systems possibly breaks
their functionality.

This can only
be solved by renaming
the internal actions
of the components!

Introduction - Global Communication (ACP)

Global communication breaks compositionality.

Conceptual oddity: actions can happen simultaniously, but must
communicate to do so.

(As it is typically used, multi-way communication is elaborate.)

Outline

Introduction
Process Algebra
Parallelism
Global Communication

Local communication
Extended Merge?
Communication Operator
Multiactions
Advantages
Example

What’s Next?

Local Communication

For a compositional language we need local communication.

Local communication only defines communication where it is used.

How to define local communication?

Local Communication - Extended Merge?

As parameter to the merge : p ‖{a|b→c} q ?

Very similar to ACP, but every parallel operator must contain
communication.

Nesting is tricky:

(p ‖{a|b→c} q) ‖{d |e→f } r vs. p ‖{a|b→c} (q ‖{d |e→f } r).

This is more a theoretical solution.

Local Communication - Communication Operator

We separate the concepts of parallelism and communication!

The merge only takes care of “interleaving”.

A new communication operator ΓC takes care of communication.

Local Communication - Communication Operator

We want a and b to communicate.

Γ{a|b→c}(a ‖ b) = Γ{a|b→c}((a · b) + (b · a)) = ?? c ??

The merge no longer takes care of communication, but now it has
to facilitate communication.

Local Communication - Multiactions

We need true concurrency; the merge should not just interleave
processes.

Actions must be able to occur simultaniously: multiactions.

A multiaction is a bag/multiset of actions. E.g. 〈a, b, b〉.

(Instead of action a we now write the singleton multiaction 〈a〉.)

Local Communication - Multiactions

Instead of adding a communication merge we add a
synchronisation operator |.

p ‖ q = (p T q) + (q T p) + (p | q)

With (〈a, b〉 · p) | (〈b, c〉 · q) = 〈a, b, b, c〉 · (p ‖ q).

Γ{a|b→c}(〈a〉 ‖ 〈b〉) = Γ{a|b→c}((〈a〉 · 〈b〉) + (〈b〉 · 〈a〉) + 〈a, b〉)
= (〈a〉 · 〈b〉) + (〈b〉 · 〈a〉) + 〈c〉

Local Communication - Advantages

Our process algebra is compositional and has true concurrency.

Multi-way communication is much easier than before:

∇{a|b|c|d}(Γ{a|b|c|d→e}(a ‖ b ‖ c ‖ d)) = e

The empty multiaction 〈〉 is the silent step τ !

〈a, b, b〉 | 〈〉 = 〈a, b, b〉

τ{a}(τ{b}(〈a, b, b〉)) = τ{a}(〈a〉) = 〈〉

Local Communication - Example

Cmp

One
Plus

Mul

S1

S2

Mul

Plus

C

Outline

Introduction
Process Algebra
Parallelism
Global Communication

Local communication
Extended Merge?
Communication Operator
Multiactions
Advantages
Example

What’s Next?

What’s Next? mCRL2!

mCRL2 is LoCo with:

• slightly different syntax (a|b|c vs. 〈a, b, c〉)

• higher-order data language (incl. predefined parts)

• time (a@5)

• a cross-platform toolset

Info and downloads at http://www.mcrl2.org/.

Thank you for your attention!

	Outline
	Introduction
	Process Algebra
	Parallelism
	Global Communication

	Local communication
	Extended Merge?
	Communication Operator
	Multiactions
	Advantages
	Example

	What's Next?

