
Action Abstraction in Timed Process Algebra

The Case for an Untimed Silent Step

Michel A. Reniers and Muck van Weerdenburg

Department of Mathematics and Computer Science
Eindhoven University of Technology (TU/e)

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
M.A.Reniers@tue.nl M.J.van.Weerdenburg@tue.nl

Abstract. This paper discusses action abstraction in timed process algebras. It is observed that the
leading approaches to action abstraction in timed process algebra all maintain the timing of actions,
even if these are abstracted from.
This paper presents a novel approach to action abstraction in timed process algebras. Characteristic
for this approach is that in abstracting from an action, also its timing is abstracted from. We define an
abstraction operator and a timed variant of rooted branching bisimilarity and establish that this notion
is an equivalence relation and a congruence.

1 Introduction

One of the main tools in analysing processes in a process algebra setting is abstraction. Abstraction allows
for the removal of information that is regarded as unobservable (or irrelevant) for the verification purpose
at hand. Abstraction is introduced in the form of an action abstraction operator, called hiding, or in the
form of data abstraction through abstract interpretations. In action hiding, certain action names are made
anonymous and/or unobservable by replacing them by a predefinedsilent step(also called internal action)
denoted byτ .

In the field of untimed process algebra, there is reasonable consensus about the properties of the silent step.
In ACP-style process algebras [BK84] the notion of (rooted)branching bisimilarity, as put forward by Van
Glabbeek and Weijland in [GW89,GW96], is mostly adopted. The few timed versions of rooted branch-
ing bisimilarity found in the literature (see [Klu93,BB95,Zwa01]) all agree on maintaining the timing of
actions, even if these actions are abstracted from. In all ofthese approaches the passing of time by itself
(i.e., without subsequent action execution or termination) can be observed. As a consequence, not as many
identifications between processes can be made as is desirable for verification purposes.

Therefore, we study an action abstraction mechanism that not only abstracts from an action, but also from
its timing. We introduce anuntimed silent stepinto a timed process algebra. We define a timed version
of rooted branching bisimilarity based on this untimed silent step, show that it is an equivalence and a
congruence, and present a remarkably straightforward axiomatisation for this notion of equivalence. We
give a short account of the identifications between processes that can be obtained using this equivalence.
This is done by showing simplifications of the PAR protocol using the notions of equivalence from the
literature and the notion introduced in this paper.

It should be mentioned that when studying timed process algebras (or timed automata for that matter), one
encounters a number of different interpretations of the interaction between actions and time. There are the
so-called two-phase models, where the progress of time is modeled separately from action execution, and
there is the time-stamped setting, where time progress and action execution are modeled together. Two-
phase models are used in [BM02], and time-stamped models arefound in timedµCRL [RGvdZvW02],
for example. In this paper, we study timed rooted branching bisimilarity in the context of an absolute time,
time-stamped model.



Structure First, we introduce a simple timed process algebra with absolute timing and a time-stamped
model (Section 2). This process algebra serves as a vehicle for our discussions on abstraction and equality
of processes. It contains primitives that are fundamental to virtually every timed process algebra. In Section
3, we discuss the notions of timed rooted branching bisimilarity as they are encountered in the literature.
In Section 4, we adapt the timed process algebra to incorporate our ideas for abstraction and equality for
timed processes interpreted in a time-stamped model. In Section 5, we illustrate the consequences of our
definitions on the PAR protocol. In Section 6, we present axioms for timed strong bisimilarity and timed
rooted branching bisimilarity. In Section 7, we discuss some standard extensions of our rather minimal
setting in some limited depth. In Section 8, we discuss the possibilities and impossibilities of adapting our
notions to other settings in timed process algebra from the literature. Section 9 wraps up the paper.

2 The Universe of Discourse

In this section, we introduce a simple time-stamped processalgebra without abstraction that serves well for
(1) a more formal exposition of our discomfort with the existing ways of dealing with abstraction in timed
process algebra, (2) a discussion of the possible solutions, and (3) the treatment of the chosen solution.

The timed process algebra presented in this section,BSP@
abs (for Basic Sequential Processeswith absolute

time and time-stamping), is an extension of the process theoryBSP from [BBR07] with absolute-timing
and time-stamping (both syntactically and semantically) inspired by the process algebratimed µCRL
[RGvdZvW02]1.

We first present the starting point of our deliberations. We assume a setTime that is totally ordered by
≤ with smallest element0 that represents the time domain2. We also assume a setAct of actions,not
containingτ .

The signature of the process algebraBSP@
abs consists of the following constants and operators:

– for eacht ∈ Time, a timed deadlock constant0@t. The process0@t idles upto timet and then dead-
locks.

– for eacht ∈ Time, a timed termination constant1@t. The process1@t idles upto timet and then
terminates successfully.

– for eacha ∈ Act andt ∈ Time, an action prefix operatora@t._. The processa@t.p represents the
process that idles upto timet, executes actiona at that time and after that behaves as processp insofar
time allows.

– the alternative-composition operator _+ _. The processp + q represents the nondeterministic choice
between the processesp andq. The choice is resolved by the execution of an action or an occurrence
of a termination.

– for eacht ∈ Time, a time-initialisation operatort ≫ _. The processt ≫ p is p limited to those
alternatives that execute their first action not before timet.

Terms can be constructed using variables and the elements from the signature. Closed terms are terms in
which no variables occur. We decide to allow the execution ofmore than one action at the same moment of
time (in some order). There are no fundamental reasons for this choice: we could equally well have adopted
the choice to disallow suchurgentactions.

Next, we provide a structured operational semantics for theclosed terms from this process algebra. We
define the following transition relations and predicates:

1 Note that in the original semantics of timedµCRL [Gro97], a two-phase model is used with states consisting of a
closed process term and a moment in time, and separate action transitions

a
→ and a time transition

ι
→.

2 It does not matter for the treatment whether this time domain is discrete or dense.
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– a time-stamped action-transition relation _
a
→t _ (with a ∈ Act and t ∈ Time), representing the

execution of an actiona at timet.
– a time-stamped termination predicate _↓t (with t ∈ Time), representing successful termination at

time t.
– a time-parameterised delay predicate _ t (with t ∈ Time), representing that a process can delay until

at least timet.

The reason for including the delay predicate is to discriminate between differently timed deadlocks: we
have0@3

 3, whereas0@2 6 3. These transition relations and predicate are defined by means of a so-
called term deduction system [AFV01]. The deduction rules are presented in Table 1. In this table and
others in the rest of this paper,x, x′, y, andy′ are variables representing arbitrary process terms,a ∈ Act
is an action name,I ⊆ Act, andt, u ∈ Time.

0@t
 u

[u ≤ t]
1@t ↓t 1@t

 u

[u ≤ t]
a@t.x

a
→t t ≫ x

a@t.x u

[u ≤ t]
x

a
→t x′

x + y
a
→t x′

y + x
a
→t x′

x ↓t

x + y ↓t

y + x ↓t

x t

x + y  t

y + x t

x
a
→u x′

t ≫ x
a
→u x′

[t ≤ u]
x ↓u

t ≫ x ↓u

[t ≤ u]
t ≫ x u

[u ≤ t]
x u

t ≫ x u

Table 1.Structured Operational Semantics ofBSP@
abs.

Strong timed bisimilarity (as defined in [RGvdZvW02], for example) is a congruence for all operators from
this process algebra. One can quite easily obtain a sound andcomplete axiomatisation of strong bisimilarity.
The details are omitted as they are of no importance to the goal of this paper.

3 Abstraction and the Timed Silent Step

In order to facilitate abstraction of actions, usually a special atomic actionτ 6∈ Act is assumed that repre-
sents aninternal actionor silent step. Also, an abstraction operatorτI (for I ⊆ Act) is used for specifying
which actions need to be considered internal. This leads to the following extensions to the signature of the
process algebra:

– for eacht ∈ Time, a silent step prefix operatorτ@t._. The processτ@t.p represents the process that
idles upto timet, executes silent stepτ at that time and after that behaves as processp insofar time
allows.

– for eachI ⊆ Act, an abstraction operatorτI . The processτI(p) represents processp in which all
actions from the setI are made invisible (i.e., replaced by silent stepτ ).

To express execution of a silent step at a certain timet the predicate _
τ
→t _ is used. The silent step prefix

operator has precisely the same deduction rules as the action prefix operator (witha replaced byτ ). The
deduction rules for the abstraction operator are given below.

x
a
→t x′

τI(x)
a
→t τI(x

′)
[a 6∈ I]

x
a
→t x′

τI(x)
τ
→t τI(x

′)
[a ∈ I]
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x
τ
→t x′

τI(x)
τ
→t τI(x

′)

x ↓t

τI(x) ↓t

x t

τI(x) t

Again, congruence of timed strong bisimilarity is obvious and obtaining a sound and complete axiomatisa-
tion of timed strong bisimilarity is not difficult either.

Timed Rooted Branching Bisimilarity In the rest of this section, we discuss several timed versions of the
well-known notion of rooted branching bisimilarity [GW89,GW96] that appeared in the literature. We refer
to the relevant literature for definitions of these notions.We only present some characteristic equalities and
inequalities between processes to illustrate the notions.

In [Klu93, Chapter 6], Klusener defines notions of rooted timed branching bisimilarity for a timed process
algebra in a setting that does not allow for consecutive actions at the same moment in time, i.e., non-
urgent actions. Two semantics and equivalences are defined,both in a setting with time-stamped action
transitions. The first semantics, the so-calledidle semantics employs idle transitions to model time passing.
The second, called theterm semantics, uses an ultimate delay predicate instead. Characteristic for the
equivalences is that an action transitiona at timet in one process may be mimicked in another process by
a well-timed sequence (i.e., a sequence in which the timing of the subsequent actions does not decrease)
of silent steps that is ultimately followed by ana-transition at timet. The intermediate states need to
be related with the original state (at the right moment in time). Klusener shows that in his setting these
two semantics and equivalences coincide. In almost the samesetting3, using the term semantics, Fokkink
proves a completeness result for the algebra of regular processes [Fok94,Fok97]. By means of the following
examples we will discuss the equivalences of Klusener.

Example 1 (No-Choice Silent Step).The three processesτ{b}(a
@1.b@2.c@4.0@5), τ{b}(a

@1.b@3.c@4.0@5)

anda@1.c@4.0@5 are obviously considered equal. Thus, the timing of the action that is hidden is of no
importance insofar it does not disallow other actions from occurring (due to ill-timedness).

Example 2 (Time-Observed Silent Step).The processesτ{b}(a
@1.(b@2.(c@3.0@4 + d@3.0@4) + d@3.0@4))

anda@1.(c@3.0@4 + d@3.0@4) are distinguished by the notion of rooted timed branching bisimilarity from
[Klu93, Chapter 6]. The reason is that in the first process at time 2 it may be determined that thed will be
executed at time 3, while in the latter process term the choice between thec and thed at 3 can not be done
earlier than at time 3.

Example 3 (Swapping).The processesτ{b}(a
@1.(b@2.c@3.0@4 + d@3.0@4)) and τ{b}(a

@1.(c@3.0@4 +

b@2.d@3.0@4)) are considered equal with respect to Klusener’s notion of equality, since in both processes
it is decided at time 2 whether thec or thed will be executed at time 3.

It is interesting to note that, if one considers Klusener’s definition of timed rooted idle branching bisimilar-
ity in a setting in which urgent actions are allowed, the swapping of silent steps as portrayed in this example
does not hold anymore. With timed rooted branching bisimilarity as defined for the term semantics though,
it remains valid.

Example 4 (Time-Choice). According to [Klu93] the processesτ{b}(a
@1.(b@3.0@4 + c@2.0@4)) and

a@1.(0@4 + c@2.0@4) are equal, since the passage of time already decides at time point 2 whether or
not the alternativec@2.0@4 occurs or not.

Baeten and Bergstra introduce the silent step to relative time, absolute time and parametric time (i.e., a
mixture of both relative and absolute time) versions of ACP with discrete time in [BB95]. A difference

3 Fokkink uses a relative-time syntax and semantics and defines the ultimate delay predicate slightly different.
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with the work of Klusener is that time steps are explicit in the syntax in [BB95]. In [BBR00], a complete
axiomatisation for timed rooted branching bisimilarity isprovided, for a variant of this theory. With respect
to the four examples presented before, the only difference between Klusener’s notion and Baeten and
Bergstra’s notion is that the latter doesnot consider the processes from Example 3 (Swapping) equal.

In [Zwa01], Van der Zwaag defines a notion of timed branching bisimilarity for a process algebra that has
almost the same syntax and semantics as ours. In the setting studied by Van der Zwaag there is no successful
termination. In [FPW05], Fokkink et al show that the notion oftimed branching bisimilarity as put forward
by Van der Zwaag is not an equivalence for dense time domains and therefore present a stronger notion
of timed branching bisimilarity that is an equivalence indeed. Also, the definitions are extended to include
successful termination. These notions of timed rooted branching bisimilarity are similar to that of Baeten
and Bergstra for the examples presented before.

The way in which abstraction of actions leads to very precisely timed silent steps can be considered prob-
lematic (from a practical point of view). This was also recognised by Baeten, Middelburg and Reniers in
[BMR02] in the context of a relative-time discrete-time process algebra with two-phase time specifications.
The equivalences as described above are not coarse enough inpractical cases such as the PAR protocol. An
attempt is made to establish a coarser equivalence (called abstract branching bisimilarity) that “treats an
internal action always as redundant if it is followed by a process that is only capable of idling till the next
time slice.” This leads to an axiom (named DRTB4) of the formτ{a}(a

@t.x) = τ{a}(t ≫ x) (in a different
syntax).

Although we support the observation of the authors from [BMR02] that a coarser notion of equivalence is
needed, we have several problems with the treatment of this issue in [BMR02]. The first is that the authors
have sincere problems in defining the equivalence on the structured operational semantics. This problem is
ultimately solved by using the (standard) definition of rooted branching (tail) bisimilarity from [BBR00]
in combination with a structured operational semantics that is a silent-step-saturated version of the original
semantics. Second, the axioms for standard operators such as parallel composition need to be adapted in a
non-trivial way.

4 Untimed Silent Step

In this section, we present a novel abstraction mechanism intimed process algebra that is inspired by the
opinion thatthe timing of a silent step as such is not observable. Therefore, one might consider defining an
abstraction operator that abstracts from an actionand from its timing. One should be careful though, that
abstraction from the timing of actiona may not result in an abstraction of the consequences of this timing
of a for the rest of the process!

In the next section, we formally present our novel approach to action abstraction in timed process alge-
bras. First we give the consequences of our intuition about the equality (called timed rooted branching
bisimilarity, denoted by↔rb , see Section 4.2 for a definition) of the example processes from the previous
section.

The timing of the action that is hidden is of no importance insofar it does not disallow other actions from oc-
curring (due to ill-timedness). Therefore, the processes from Example 1 (No-Choice) should be considered
equal:

τ{b}(a
@1.b@2.c@4.0@5) ↔rb τ{b}(a

@1.b@3.c@4.0@5) ↔rb a@1.c@4.0@5

The processes from Example 2 (Time-Observed Silent Step) are equal in our setting since we do not wish
to consider the timing of the internal step relevant:

τ{b}(a
@1.(b@2.(c@3.0@4 + d@3.0@4) + d@3.0@4)) ↔rb a@1.(c@3.0@4 + d@3.0@4)
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The processes from Example 3 (Swapping) are different processes, since by executing the silent step, an
option that was there before has disappeared:

τ{b}(a
@1.(b@2.c@3.0@4 + d@3.0@4)) =rb τ{b}(a

@1.(c@3.0@4 + b@2.d@3.0@4))

Since we do not allow to take the timing of the abstracted action into account, we cannot have the equality
of the processes from Example 4 (Time-Choice):

τ{b}(a
@1.(b@3.0@4 + c@2.0@4)) =rb a@1.(0@4 + c@2.0@4)

In contrast with the other equivalences discussed in this paper, the processτ{b}(a
@1.(b@3.0@4 + c@2.0@4))

can only be ‘simplified’ toa@1.(τ.0@4 + c@2.0@4). Thus the silent step remains.

In our opinion, in [BMR02] too many silent steps can be omitted. Consider for example the process
τ{a}(a

@1.0@2 + b@3.0@4). In [BMR02], it is considered to be equal tob@3.0@4. In our opinion, the execu-
tion of the internal step disables the execution of actionb altogether.

4.1 Abstraction using the Untimed Silent Step

We propose to extend the process algebra from Section 2 with the following primitives instead of the timed
silent action prefix operators and abstraction operator from Section 3:

– the silent step prefix operatorτ._. The processτ.p performs an internal action (not at any specific time)
and thereafter behaves asp.

– for eachI ⊆ Act, the abstraction operatorτI . The processτI(p) represents processp where all actions
from the setI are made invisible (replaced by the untimed silent stepτ ). It should be noted that the
consequences of the timing of the abstracted action are not abstracted from.

In the structured operational semantics, we add a relation _
τ
→ _ that represents the execution of an untimed

silent step. For alternative composition and time initialisation we add deduction rules for this new transition
relation (the first two deduction rules in Table 2). In the second deduction rule for the abstraction operator

x
τ
→ x′

x + y
τ
→ x′ y + x

τ
→ x′

x
τ
→ x′

t ≫ x
τ
→ t ≫ x′ τ.x

τ
→ x

x
a
→t x′

τI(x)
a
→t τI(x

′)
[a 6∈ I]

x
a
→t x′

τI(x)
τ
→ τI(x

′)
[a ∈ I]

x
τ
→ x′

τI(x)
τ
→ τI(x

′)

x ↓t

τI(x) ↓t

x t

τI(x) t

Table 2.Structured Operational Semantics of untimed silent step and abstraction operator.

one can see that a timed action is replaced by an untimed silent step in case the action is to be abstracted
from. Also note that the consequences of the timing of the action are imposed on the rest of the process
by means of the time-initialisation operator in the deduction rule for action-transitions of the action prefix
operator (in Table 1). This means that the processx′ incorporates the fact that timet has been reached.
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Example 5.Somewhat surprisingly, the processp = a@2.τ{b}(b
@1.0@4) is not ill-timed. This is a conse-

quence of our decision that the timing of abstracted actionsis not observable. Thus the processp is equal
to a@2.0@4 and of course also toa@2.τ{b}(b

@3.0@4) (which can hardly be considered ill-timed). It should
be noted that in a relative time setting this phenomenon of ill-timedness does not occur.

4.2 Timed Rooted Branching Bisimilarity

In the following definition we use the notationp ⇒ q to denote thatq can be reached fromp by executing

an arbitrary number (possibly zero) ofτ -transitions. The notationp
(τ)
→ q meansp

τ
→ q or p = q.

Definition 1 (Timed Rooted Branching Bisimilarity). Two closed termsp and q are timed branching
bisimilar, notationp↔bq, if there exists a symmetric binary relationR on closed terms, called atimed
branching bisimulationrelation, relatingp andq such that for all closed termsr ands with (r, s) ∈ R:

1. if r
a
→t r′ for somea ∈ Act, t ∈ Time, and closed termr′, then there exist closed termss∗ ands′

such thats ⇒ s∗
a
→t s′, (r, s∗) ∈ R and(r′, s′) ∈ R;

2. if r
τ
→ r′ for some closed termr′, then there exist closed termss∗ and s′ such thats ⇒ s∗

(τ)
→ s′,

(r, s∗) ∈ R and(r′, s′) ∈ R;
3. if r ↓t for somet ∈ Time, then there exists a closed terms∗ such thats ⇒ s∗ ↓t and(r, s∗) ∈ R;
4. if r  t for somet ∈ Time, then there exists a closed terms∗ such thats ⇒ s∗  t and(r, s∗) ∈ R.

If R is a timed branching bisimulation relation, we say that the pair (p, q) satisfies theroot conditionwith
respect toR if

1. if p
a
→t p′ for somea ∈ Act, t ∈ Time, and closed termp′, then there exists a closed termq′ such that

q
a
→t q′ and(p′, q′) ∈ R;

2. if p
τ
→ p′ for some closed termp′, then there exists a closed termq′ such thatq

τ
→ q′ and(p′, q′) ∈ R;

3. if p ↓t for somet ∈ Time, thenq ↓t.
4. if p t for somet ∈ Time, thenq  t.

Two closed termsp andq are calledtimed rooted branching bisimilar, notationp ↔rb q, if there is a timed
branching bisimulation relationR relating p and q such that the pairs(p, q) and (q, p) satisfy the root
condition with respect toR.

4.3 Properties of Timed Rooted Branching Bisimilarity

In this section, we show that timed rooted branching bisimilarity as defined in the previous section is
indeed an equivalence. Moreover we show that it is a congruence for the rather restricted set of operators
introduced.

Theorem 1. Timed rooted branching bisimilarity is an equivalence relation.

Proof. A proof that timed rooted branching bisimilarity is an equivalence relation is given in Appendix A.

Theorem 2. Timed bisimilarity and timed rooted branching bisimilarity are congruences for all operators
from the signature of the process algebraBSP@

abs.
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Proof. The deduction rules are in the path format, thus congruence of timed bisimilarity follows from the
meta-theory in [BV93]. See [AFV01] for an overview of the type of meta-theory used here. A proof of
congruence of timed rooted branching bisimilarity is givenin Appendix B.

Furthermore, obviously timed rooted branching bisimilarity identifies strictly more process than timed
strong bisimilarity does.

Theorem 3. Timed strongly bisimilar processes are timed rooted branching bisimilar: i.e.,↔ ⊆ ↔rb .

Proof. Trivial.

From the examples presented in the previous sections, we caneasily conclude that our notion of equality
is incomparable with the notions from Klusener [Klu93], Baeten and Bergstra [BB95], and Van der Zwaag
[Zwa01]. We claim that the notion of abstract branching bisimilarity from [BMR02] is coarser than ours.

5 Case Study: PAR Protocol

5.1 Specification of the PAR Protocol

In [BMR02] the Positive Acknowledgement Retransmission protocol is used to illustrate the need for a
coarser equivalence. In this paper, we will use the same protocol for illustrating the problem and (later on)
the solution. The following informal description of the protocol is almost taken verbatim from [BMR02].

In the PAR protocol, the sender (S) waits for a positive acknowledgement before a new datum is transmit-
ted. If an acknowledgement is not received within a completeprotocol cycle, the old datum is retransmitted.
In order to avoid duplicates due to retransmission, data arelabeled with an alternating bit fromB = {0, 1}.
The configuration of the PAR protocol is given in Figure 1 by means of a connection diagram. The protocol
entities are a senderS, a receiverR, a forward channelK, and a backward channelL.

S

K

L

R
1

3 4

2

65

Fig. 1.Connection diagram for the PAR protocol. The numbers on the connectionlines indicate the port numbers.

The processS waits until a datumd is offered at an external port (port 1). ThenS packs it with an alternating
bit b in a frame(d, b) , and then delivers it at the port used for sending (port 3). Itis assumed that this a
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constant amount of timetS . ThenS waits until an acknowledgementack is offered at port 5. When the
acknowledgement does not arrive within a certain time period (t′S), S repeats the delivery of the frame and
again waits for an acknowledgement. When the acknowledgement arrives in time,S starts waiting for a
datum again.

The receiverR waits until a frame(d, b) is offered at port 4. It unpacks it, delivers the datum at external
port 2 in case the bitb is the right one (this takestR time), and offers an acknowledgement at internal
port 6 (t′R time). Then the receiver goes back to waiting for a frame. In case the right bit was received the
alternating bit is flipped.

The channelsK andL pass frames and acknowledgements, respectively. These channels are supposed to
be unreliable, they may produce an error instead of passing on data. The channels requiretK andtL time
for passing the data, respectively.

In this paper, we do not present specifications for the separate protocol entities. We immediately give
the expanded version where all occurrences of parallel composition operators are removed. Note that we
have used notations such as

∑

t′
p that describe a potentially infinite alternative composition consisting of

one alternative ofp for eacht′. We refrain from giving operational semantics for this operator, called
summation [RGvdZvW02] or alternative quantification [Lut02].

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = c3(d, b)@t.





c4(d, b)@t+tK .s2(d)@t+tK+tR .c6(ack)@t+tK+tR+t′
R .Zd,b,t+tK+tR+t′

R

+
∑

k≤tK

error@t+k.Yd,b,t+t′
S





Zd,b,t = c5(ack)@t+tL .Xb,t+tL
+

∑

l≤tL

error@t+l.Ud,b,t+t′
S
−tK−tR−t′

R

Ud,b,t = c3(d, b)@t.





c4(d, b)@t+tK .c6(ack)@t+tK+t′
R .Vd,b,t+tK+t′

R

+
∑

k≤tK

error@t+k.Ud,b,t+t′
S





Vd,b,t = c5(ack)@t+tL .Xb,t+tL
+

∑

l≤tL

error@t+l.Ud,b,t+t′
S
−tK−t′

R

We obtained the above expanded version of the PAR protocol bycarefully translating the version of
[BMR02] to the process algebra that is used in this paper. We believe that we can also define a simi-
lar parallel composition operator and we believe that we canobtain the above result from expansion of
parallel-composition operators in our setting too.

5.2 Abstraction of Internal Actions using Timed Silent Steps

The application of the abstraction operator from the previous section with

I = {c3(d, b), c4(d, b) | d ∈ D, b ∈ B} ∪ {c5(ack), c6(ack), error}

to the expanded version of the PAR protocol from Section 5.1 results in the following recursive specifica-
tion:
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Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = τ@t.





τ@t+tK .s2(d)@t+tK+tR .τ@t+tK+tR+t′
R .Zd,b,t+tK+tR+t′

R

+
∑

k≤tK

τ@t+k.Yd,b,t+t′
S





Zd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S
−tK−tR−t′

R

Ud,b,t = τ@t.





τ@t+tK .τ@t+tK+t′
R .Vd,b,t+tK+t′

R

+
∑

k≤tK

τ@t+k.Ud,b,t+t′
S





Vd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S
−tK−t′

R

With respect to timed rooted branching bisimilarity as defined in the previous section, this description can
be simplified to the following:

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = τ@t+tK .s2(d)@t+tK+tR .Zd,b,t+tK+tR+t′
R

+
∑

k≤tK

τ@t+k.Yd,b,t+t′
S

Zd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S
−tK−tR−t′

R

Ud,b,t = τ@t+tK .Vd,b,t+tK+t′
R

+
∑

k≤tK

τ@t+k.Ud,b,t+t′
S

Vd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S
−tK−t′

R

Again, this result is just obtained by translating the result from [BMR02] to our setting.

The silent steps that occur cannot be left out with respect tothe standard notion of timed rooted branch-
ing bisimilarity. Thus the abstraction from the internal communication actions has not lead to a drastic
simplification of the process.

5.3 Abstraction of Internal Actions using Untimed Silent Steps

The following process description is obtained after abstraction from the internal communications and ac-
tions fromI.

10



Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = τ.(t + tK) ≫ s2(d)@t+tk+tR .Zd,b,t+tK+tR+t′
R

+
∑

k≤tK

τ.(t + k) ≫ Yd,b,t+t′
S

Zd,b,t = τ.(t + tL) ≫ Xb,t+tL
+

∑

l≤tL

τ.(t + l) ≫ Ud,b,t+t′
S
−tK−tR−t′

R

Ud,b,t = τ.(t + tK) ≫ Vd,b,t+tK+t′
R

+
∑

k≤tK

τ.(t + k) ≫ Ud,b,t+t′
S

Vd,b,t = τ.(t + tL) ≫ Xb,t+tL
+

∑

l≤tL

τ.(t + l) ≫ Ud,b,t+t′
S
−tK−t′

R

Observe that none of the processes execute an action before time t and that therefore all time initialisations
disappear (usingt′S > tK + tR + t′R + tL). We thus get the following specification.

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = τ.s2(d)@t+tk+tR .Zd,b,t+tK+tR+t′
R

+ τ.Yd,b,t+t′
S

Zd,b,t = τ.Xb,t+tL
+ τ.Ud,b,t+t′

S
−tK−tR−t′

R

Ud,b,t = τ.Vd,b,t+tK+t′
R

+ τ.Ud,b,t+t′
S

Vd,b,t = τ.Xb,t+tL
+ τ.Ud,b,t+t′

S
−tK−t′

R

This way many simplifications have already been achieved andallows us to simplify the specification even
more. We can, for example, eliminateV by substitution inU . This gives us the following equation forU :

Ud,b,t = τ.(τ.Xb,t+tK+t′
R

+tL
+ τ.Ud,b,t+t′

S
) + τ.Ud,b,t+t′

S

Note the pattern of axiom(B). With (B) we get:

Ud,b,t = τ.Xb,t+tK+t′
R

+tL
+ τ.Ud,b,t+t′

S

If we also move thetK + tR + t′R in Y to Z, we get the following specification.

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = τ.s2(d)@t+tk+tR .Z ′
d,b,t + τ.Yd,b,t+t′

S

Z ′
d,b,t = τ.Xb,t+tK+tR+t′

R
+tL

+ τ.Ud,b,t+t′
S

Ud,b,t = τ.Xb,t+tK+t′
R

+tL
+ τ.Ud,b,t+t′

S

Note the strong similarity ofZ ′ andU . By adding an extra parameter toU we get the final specification.
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Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′ .Yd,b,t+t′+tS

Yd,b,t = τ.s2(d)@t+tk+tR .U ′
d,b,t,tR

+ τ.Yd,b,t+t′
S

U ′
d,b,t,u = τ.Xb,t+tK+u+t′

R
+tL

+ τ.U ′
d,b,t+t′

S
,0

The silent steps that are left are essential. The silent steps inY determine whether or not an error occurred
in channelK, and those inU ′ determine the same for channelL. As these errors result in an additional
delay before the next action occurs, they are not redundant.

6 Axioms for Timed Rooted Branching Bisimilarity

In Table 3 we present axioms for timed strong bisimilarity. The axioms (A1)-(A3) express some standard
properties of alternative composition. Axiom (WT) (for well-timedness) describes that the time that is
reached by executing an action is passed on to the subsequentprocess. The axioms (A6a)-(A6d) describe
the properties of timed deadlocks, especially the circumstances under which they can be removed from the
process description. An important equality that can be derived for closed termsp is p + 0@0 = p.

Axioms (I1)-(I7) describe how the time-initialisation operator can be eliminated from terms. Note that the
silent step neglects this operator (axiom (I6)). Axioms (H1)-(H6) describe how the abstraction operator can
be eliminated. Note that the timing of an action that is abstracted from is passed on to the rest of the process
(axiom (H4)). The time-initialisation operator in the right-hand side of axiom (H3) is needed in order to
enforce the timing restriction from the action prefix beforeapplying further abstractions.

(A1) x + y = y + x (A6a) 0@t + 0@u = 0@max(t,u)

(A2) (x + y) + z = x + (y + z) (A6b) u ≤ t ⇒ 1@t + 0@u = 1@t

(A3) x + x = x (A6c) u ≤ t ⇒ a@t.x + 0@u = a@t.x

(WT) a@t.x = a@t.t ≫ x (A6d) u ≤ t ⇒ τ.(x + 0@t) + 0@u = τ.(x + 0@t)

(I1) t ≫ 0@u = 0@max(t,u) (H1) τI(0
@t) = 0@t

(I2) u < t ⇒ t ≫ 1@u = 0@t (H2) τI(1
@t) = 1@t

(I3) u ≥ t ⇒ t ≫ 1@u = 1@u

(I4) u < t ⇒ t ≫ a@u.x = 0@t (H3) a 6∈ I ⇒ τI(a
@t.x) = a@t.τI(t ≫ x)

(I5) u ≥ t ⇒ t ≫ a@u.x = a@u.x (H4) a ∈ I ⇒ τI(a
@t.x) = τ.τI(t ≫ x)

(I6) t ≫ τ.x = τ.t ≫ x (H5) τI(τ.x) = τ.τI(x)
(I7) t ≫ (x + y) = t ≫ x + t ≫ y (H6) τI(x + y) = τI(x) + τI(y)

Table 3.Axioms for timed strong bisimilarity and timed rooted branching bisimilarity.

We claim that the axioms from Table 3 are sound and complete for timed strong bisimilarity on closed
terms. These axioms are (of course; see Theorem 3) also validfor timed rooted branching bisimilarity.
In Table 4, one additional axiom is presented for timed rooted branching bisimilarity. The reader should
notice that this axiom resembles the untimed axiom for rooted branching bisimilaritya.(τ.(x + y) + x) =
a.(x + y) meticulously. Also, it is expected that the axioms from bothtables provide a sound and complete
axiomatisation of timed rooted branching bisimilarity on closed terms.

Example 6.Consider the process termp = τ{b}(a
@1.(b@3.(c@2 + d@4) + c@2)). Using the axioms for

the abstraction operator and for time initialisation we have p = a@1.(τ.3 ≫ (c@2 + d@4) + c@2) =

12



(B) a@t.(τ.(x + y) + x) = a@t.(x + y)

Table 4.Axiom for timed rooted branching bisimilarity.

a@1.(τ.d@4 + c@2). Observe that although the actionb is abstracted from, its timing properties are prop-
agated. This example explains the occurrence of the time-initialisation operator in axiom (H4). Without
the occurrence of the time-initialisation operator in axiom (H4) the following would be valid derivations:
p = a@1.(τ.(c@2 + d@4) + c@2) = a@1.(c@2 + d@4) andp = a@1.(τ.d@4 + c@2). The resulting equality
of a@1.(c@2 + d@4) andp = a@1.(τ.d@4 + c@2) is completely counterintuitive.

A similar example can be constructed to show that for the axioms (H3) and (H4) the time initialisation
must indeed be placed inside the abstraction operator and not outside.

7 Extensions of the Timed Process Algebra

In order to illustrate that our restriction to the very limited set of operators is not inspired by fundamental
limitations, in this section we extend the timed process algebra with some operators that are frequently
encountered in timed process algebra in the ACP community.

7.1 Sequential Composition

We propose the following deduction rules for the binary sequential-composition operator. Compared to
such deduction rules in a setting with timed silent step we only need to have separate deduction rules for
the untimed silent step. Also these deduction rules are comparable to those of sequential composition in
µCRL andmCRL2 if one neglects the fact that these languages have a different termination predicate.

x
a
→t x′

x · y
a
→t x′ · y

x ↓u u ≫ y
a
→t y′

x · y
a
→t y′

x
τ
→ x′

x · y
τ
→ x′ · y

x ↓u u ≫ y
τ
→ y′

x · y
τ
→ y′

x ↓u u ≫ y ↓t

x · y ↓t

x t

x · y  t

x ↓u u ≫ y  t

x · y  t

Timed strong bisimilarity and timed rooted branching bisimilarity are congruences for sequential compo-
sition.

Theorem 4 (Congruence).Timed bisimilarity and timed rooted branching bisimilarity are congruences
for sequential composition.

Proof. The deduction rules are in the path format, thus congruence of timed bisimilarity follows from the
meta-theory in [BV93]. A proof of congruence of timed rootedbranching bisimilarity is given in Appendix
B.
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In the section on future work in [FPW05], the authors mention that it is an interesting question whether
a timed rooted branching bisimilarity is a congruence for a simple timed basic process algebra such as
Baeten and Bergstra’s BPAρδ [BB91] (note that this theory is called BPAur

ρδ in [FPW05]) which features

time-stamped urgent actions. Although we did not address precisely this theory, forBSP@
abs extended

with sequential composition we have established congruence of timed rooted branching bisimilarity (with
untimed silent steps).

Below we present axioms for sequential composition that express the basic properties of sequential com-
position such as distributivity over alternative composition (axiom (A4)) and associativity (axiom (A5))
and at the same time allows for the elimination of sequentialcomposition from every closed process term
(axioms (A5a), (A5b), (A7), and (A8)).

(A4) (x + y) · z = x · z + y · z (A5a) a@t.x · y = a@t.(x · y) (A7) 0@t · x = 0@t

(A5) (x · y) · z = x · (y · z) (A5b) τ.x · y = τ.(x · y) (A8) 1@t · x = t ≫ x

It can be shown that these axioms are sound for timed strong bisimilarity (and hence also for timed rooted
branching bisimilarity), that this extension with sequential composition is a conservative ground-extension
(see [BMR05] for a definition), and that sequential composition can be eliminated from closed terms.

In, amongst others, timedµCRL, the equalityτI(x · y) = τI(x) · τI(y) is valid for closed terms. As
a consequence of the introduction of the untimed silent stepand its corresponding abstraction operator
this equality does not hold any longer. This can be seen by considering the processesp = a@2.1@2 and
q = b@1.1@3. Let I = {b}. Now, the processτI(p · q) is timed rooted branching bisimilar to the process
a@2.0@2 whereas the processτI(p) · τI(q) is timed rooted branching bisimilar toa@2.1@3, which are
obviously not timed rooted branching bisimilar.

7.2 Parallel Composition

Next we consider a parallel composition operator without communication. There are many different paral-
lel composition operators in the literature, especially with respect to termination and time-synchronisation
options. Here, we choose to mimic the termination and time-synchronisation options of the parallel com-
position operator from [BR]: both termination and time-progress are fully synchronised between the com-
ponents.

x
a
→t x′ y  t

x ‖ y
a
→t x′ ‖ t ≫ y

y ‖ x
a
→t t ≫ y ‖ x′

x
τ
→ x′

x ‖ y
τ
→ x′ ‖ y

y ‖ x
τ
→ y ‖ x′

x ↓t y ↓t

x ‖ y ↓t

x t y  t

x ‖ y  t

Timed strong bisimilarity and timed rooted branching bisimilarity are congruences for sequential compo-
sition.

Theorem 5 (Congruence).Timed bisimilarity and timed rooted branching bisimilarity are congruences
for parallel composition.

Proof. The deduction rules are in the path format, thus congruence of timed bisimilarity follows from the
meta-theory in [BV93]. A proof of congruence of timed rootedbranching bisimilarity is given in Appendix
B.
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As can be seen from the above deduction rules, the introduction of the untimed silent step and the cor-
responding abstraction operator have no influence at all. Therefore, we claim that an axiomatisation can
easily be given following [RGvdZvW02,BR].

Note that the equalityτI(x ‖ y) = τI(x) ‖ τI(y) is not valid for closed terms. This can be seen as follows.
Consider the processesp = a@1.0@3 andq = b@2.0@3 + c@2.0@3 and the set of actionsI = {b} to be
abstracted from. The compositionτI(p ‖ q) reduces to the processa@1.(τ.0@3 + c@2.0@3). On the other
handτI(p) ‖ τI(q) reduces toa@1.(τ.0@3 + c@2.0@3) + τ.a@1.0@3. It is not hard to see that these are
different.

8 Other Timed Process Algebra Settings

The process algebra that we have chosen as our universe of discourse can be classified (both syntactically
and semantically) as an absolute-time time-stamped process algebra. As mentioned before, in the literature
there are some other versions available, with respect to both the syntax used and the semantics adopted. In
this section, we discuss, with respect to the semantics, howthe abstraction technique presented here for an
absolute-time time-stamped process algebra can be carriedover to other types of timed process algebras
and what problems are expected to arise in doing so.

In a setting where the time-stamping mechanism uses relative time the treatment becomes even simpler. In
such a settinga@t.p means thata is to be executedt time after the execution of the previous action (or after
the conception of the process). As a consequence of this relative-timing the problem of ill-timedness is
avoided. Therefore, the time-initialisation operator canbe left out. Instead, one needs to have a mechanism
for updating the relative time-stamp of the initial actionsof the subsequent process due to abstraction:

x
a
→t x′ a ∈ I

τI(x)
τ
→ t⊛ τI(x

′)

wheret ⊛ p means thatt time has to be added to the time-stamp of the first visible action from p. For
example3⊛ a@5.p behaves asa@8.p. An example of such an operator is the time shift operator(t)_ (also
with negativet!) that has been used by Fokkink for defining timed branching bisimilarity in [Fok94].

We have chosen to carry out our deliberations in a time-stamped setting because this setting allows for a
very natural definition of the abstraction operator since the timing of the action (before abstraction) and the
action itself are tightly coupled in the model. To illustrate the difficulties that arise in defining abstraction
in a two-phase model, we look at the following processes (in the syntax of [BMR05,BR]). Note thatσ._ is
a time step prefix operator anda._ is an immediate action prefix operator.

a

σ
a

τ
σ

a

b

a σ

a

b

Fig. 2.Processesa.(σ.a.0 + τ .σ.(a.0 + b.0)) anda.σ.(a.0 + b.0)

As we have discussed in Section 4, we consider these processes equivalent. However, to express this in an
equivalence, we need to be able to relate the states of both processes. In the diagram above one can see that
the first process can make a time transition that results in a state (the black one) that has no corresponding
state in the second process. The essence of this problem is that one tries to relate states that are reached
solely by time steps such as the black one. We thus believe thesolution is to not relate such states, even if
they exist.
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9 Concluding Remarks

In this paper, we have introduced a notion of abstraction that abstracts from the identity of an action and
its timing, resulting in an untimed silent step. We have developed an accompanying notion of equality of
processes, also called timed rooted branching bisimilarity. We have shown that this notion is an equivalence
relation and a congruence for all operators considered in this paper and as such may be a meaningful tool
in analysing and verifying systems. A first experiment, on the PAR protocol, indicates that our notions
allow for a much clearer and smaller representation of the abstract system than the standard notions do. An
axiomatisation of timed rooted branching bisimilarity forclosed process terms is given with an axiom for
the removal of untimed silent steps that resembles the well-known axiom from untimed process algebra.

In case one does not accept our reasoning for adopting the untimed silent step, one can keep the abstraction
operator and timed silent steps (since they are considered relevant) as usual and add an untimed silent step
and an abstraction operator that only abstracts from the timing of the silent steps. This way one can control
whether or not to use untimed silent step, for example depending on the properties that need to be validated.

In this paper, we have made many claims about the timed process algebra with untimed silent steps. Of
course, these claims need to be substantiated further. Also, it is worthwhile to study our notion of ab-
straction in other timed settings, most notably those with relative timing and where timing is described
by separate timing primitives (decoupled from actions) as in [BM02] and most other mainstream timed
process algebras.

We have illustrated the differences and similarities between the different definitions of timed rooted branch-
ing bisimilarity from literature and our version by means ofexamples only. A more thorough comparison is
needed. Also, a comparison with timed versions of weak bisimilarity (e.g., [MT92,Che93,QdFA93,HSZF93])
should be performed.

The success of an abstraction mechanism and notion of equality not depend only on the theoretical prop-
erties (though important) of these notions, but much more soon the practical suitability of these notions.
Therefore, we need to perform more case studies to observe whether these notions contribute to a bet-
ter/easier verification of correctness and/or properties of relevant systems.

We are, in line with our previous work ([BMR05,BR]), very interested in obtaining a collection of theories
that are nicely related by means of conservativity results and embeddings. Therefore, it is interesting to
extend the rather limited timed process algebra from this paper with untimed action prefix operatorsa._
in order to formally study, in one framework, the relationship between rooted branching bisimilarity on
untimed processes and our timed version.

A complementary way of specifying a timed system is by means of a timed (modal) logic. It is worthwhile
to get a deeper understanding of our notion of action abstraction and timed rooted branching bisimilarity by
considering the relationship with modal logics for timed systems as has been done for strong bisimilarity
[Par81] and Hennessy-Milner logic [HM85]. We have good hopethat the majority of the logics that are used
for the specification of properties of timed systems are preserved by our notion of timed rooted branching
bisimilarity.

AcknowledgementsWe acknowledge useful comments from Jos Baeten, Pieter Cuijpers, Wan Fokkink, Jan
Friso Groote, Bas Luttik, Bas Ploeger, Yaroslav Usenko, andTim Willemse.
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A Timed Rooted Branching Bisimilarity is an Equivalence

In order to conclude that timed rooted branching bisimilarity as defined in Section 4.2 is an equivalence, it
has to be shown that it is reflexive, symmetric, and transitive.

Reflexivity

The reflexivity of timed rooted branching bisimilarity follows directly from the fact that the relationR that
relates every closed process term to itself is a timed branching bisimulation relation and that it satisfies the
root condition for all its pairs of closed process terms.

Symmetry

The symmetry of timed rooted branching bisimilarity follows immediately from the requirement in the
definition of a timed branching bisimulation relation that it has to be symmetric.

Transitivity

Lemma 1. Let p andq be processes andR a timed branching bisimulation relation such that(p, q) ∈ R.
For all p′ such thatp ⇒ p′, we have that there is aq′ such thatq ⇒ q′ and(p′, q′) ∈ R.

Proof. We prove this lemma by induction on the length of the derivation of⇒.

– p ⇒ p′ becausep = p′. We also haveq ⇒ q and(p, q) ∈ R.
– p ⇒ p′ because there is ap∗ such thatp ⇒ p∗

τ
→ p′. By induction we have that there is aq∗ such

that q ⇒ q∗ and(p∗, q∗) ∈ R. The latter, withp∗
τ
→ p′, gives us that there areq∗∗ andq′ such that

q∗ ⇒ q∗∗
(τ)
→ q′, (p∗, q∗∗) ∈ R and(p′, q′) ∈ R. Becauseq ⇒ q∗ ⇒ q∗∗ trivially meansq ⇒ q∗∗, we

haveq ⇒ q∗∗
(τ)
→ q′. Thus we haveq ⇒ q′ with (p′, q′) ∈ R.

Definition 2. Let R andR′ be two relations. We define thesymmetric compositionof R andR′, notation
R • R′, as followsR • R′ = (R ◦ R′) ∪ (R′ ◦ R).

Obviously, the symmetric composition of two symmetrical relations is again symmetrical.

Lemma 2. LetR andR′ be timed branching bisimulation relations. The relationR•R′ is a timed branch-
ing bisimulation relation.

Proof. Let R andR′ be timed branching bisimulation relations and letp and r be processes such that
(p, r) ∈ R • R′. Also take processq such that(p, q) ∈ R and(q, r) ∈ R′.

1. If p
a
→t p′, then, because of(p, q) ∈ R, we know that there areq∗ andq′ such thatq ⇒ q∗

a
→t q′,

(p, q∗) ∈ R and(p′, q′) ∈ R. Because of(q, r) ∈ R′ and Lemma 1 we have that there is ar∗ such
that r ⇒ r∗ and(q∗, r∗) ∈ R′. From this, andq∗

a
→t q′, it follows that there arer∗∗ andr′ such

that r∗ ⇒ r∗∗
a
→t r′, (q∗, r∗∗) ∈ R′ and (q′, r′) ∈ R′. Therefore we haver ⇒ r∗∗

a
→t r′ with

(p, r∗∗) ∈ R • R′ and(p′, r′) ∈ R • R′.
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2. If p
τ
→ p′, then, because of(p, q) ∈ R, we know that there areq∗ andq′ such thatq ⇒ q∗

(τ)
→ q′,

(p, q∗) ∈ R and(p′, q′) ∈ R. Because of(q, r) ∈ R′ and Lemma 1 we have that there is ar∗ such

that r ⇒ r∗ and (q∗, r∗) ∈ R′. From this, andq∗
(τ)
→ q′, it follows that there arer∗∗ andr′ such

that r∗ ⇒ r∗∗
(τ)
→ r′, (q∗, r∗∗) ∈ R′ and (q′, r′) ∈ R′. Therefore we haver ⇒ r∗∗

(τ)
→ r′ with

(p, r∗∗) ∈ R • R′ and(p′, r′) ∈ R • R′.
3. If p ↓t, then, because of(p, q) ∈ R, we know that there is aq′ such thatq ⇒ q′ ↓t and(p, q′) ∈ R.

Because of(q, r) ∈ R′ and Lemma 1 we have that there is ar∗ such thatr ⇒ r∗ and(q′, r∗) ∈ R′.
From this, andq′ ↓t, it follows that there is ar′ such thatr∗ ⇒ r′ ↓t and(q′, r′) ∈ R′. Therefore we
haver ⇒ r′ ↓t with (p, r′) ∈ R • R′.

4. If p t, then, because of(p, q) ∈ R, we know that there is aq′ such thatq ⇒ q′  t and(p, q′) ∈ R.
Because of(q, r) ∈ R′ and Lemma 1 we have that there is ar∗ such thatr ⇒ r∗ and(q′, r∗) ∈ r′.
From this, andq′  t, it follows that there is ar′ such thatr∗ ⇒ r′  t and(q′, r′) ∈ R′. Therefore
we haver ⇒ r′  t and(p, r′) ∈ R • R′.

The proof for the case that(p, q) ∈ R′ and(q, r) ∈ R is similar.

Theorem 6. Timed rooted branching bisimilarity↔rb is transitive. That is, ifp ↔rb q andq ↔rb r, then
alsop ↔rb r (for all processesp,q andr).

Proof. Letp, q andr be processes such thatp↔rb q andq ↔rb r. This means that there are timed branching
bisimulation relationsR andR′ such that(p, q) ∈ R and(q, r) ∈ R′ and the root condition holds for(p, q)
(with respect toR) and for(q, r) (with respect toR′). By Definition 2 we have that(p, q) ∈ R • R′ and
Lemma 2 says thatR • R′ is a timed branching bisimulation relation. Thus, we only need that the root
condition holds for(p, r) with respect toR •R′, which follows straightforwardly from the fact that it holds
for (p, q) with respect toR and for(q, r) with respect toR′.

B Timed Rooted Branching Bisimilarity is a Congruence

In this appendix, proofs are given for congruence of timed rooted branching bisimilarity with respect to all
operators introduced in this paper.

B.1 Action Prefix

Assume thatp ↔rb q. Furthermore, assume thatR is the witness for this assumption. Define

R′ = {(a@t.p, a@t.q), (a@t.q, a@t.p)} ∪ R≫,

whereR≫ is the relation that is used to prove congruence with respectto the time-initialisation operator.

For the proof that the pairs fromR≫ satisfy the transfer conditions please refer to the proof ofcongruence
with respect to the time-initialisation operator. Thus it remains to verify this for the pairs(a@t.p, a@t.q)
and(a@t.q, a@t.p). Due to symmetry considerations it suffices to consider the pair (a@t.p, a@t.q) only.

Since the process terma@t.p does not have silent step transitions and termination predicates, these cases
are trivially satisfied.

– Suppose thata@t.p
a
→t p′ for some closed termp′. Then, by inspection of the deduction rules it

follows thatp′ = t ≫ p. Using the deduction rules we also obtaina@t.q
a
→t t ≫ q. We also have that

(t ≫ p, t ≫ q) ∈ R′. From this it follows, takeq∗ = a@t.q andq′ = t ≫ q, that there existq∗ andq′

such thata@t.q ⇒ q∗
(a)
→t q′ and(a@t.p, q∗) ∈ R′ and(p′, q′) ∈ R′.
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– Suppose thata@t.p u for someu ∈ Time. Then, by inspection of the deduction rules it follows that
u ≤ t. Then we also havea@t.q  u. From this it follows, takeq∗ = a@t.q, that there exists aq∗ such
thata@t.q ⇒ q∗  u and(a@t.p, q∗) ∈ R′.

As a part of the above proof of the transfer conditions we havealready shown that the pair(a@t.p, a@t.q)
satisfies the root condition.

B.2 Alternative Composition

Assume thatp1 ↔rb q1 and thatp2 ↔rb q2. Furthermore, assume thatR1 andR2 are the witnesses for
these assumptions. Define

R = {(p1 + p2, q1 + q2), (q1 + q2, p1 + p2)} ∪ R1 ∪ R2.

It is trivial that the pairs fromR that are also inR1 or R2 satisfy the transfer conditions of timed branching
bisimilarity. Thus it remains to verify this for the pairs(p1 + p2, q1 + q2) and(q1 + q2, p1 + p2). Due to
symmetry considerations it suffices to consider the pair(p1 + p2, q1 + q2) only.

– Suppose thatp1 + p2
a
→t p for somea ∈ Act, t ∈ Time, and closed termp. Then, by inspection

of the deduction rules it follows thatp1
a
→t p or p2

a
→t p. The two cases are symmetrical, thus we

only consider the case thatp1
a
→t p. Since(p1, q1) ∈ R1 andR1 is a branching bisimulation relation

that satisfies the root condition for(p1, q1) it follows that there exists a closed process termq such that
q1

a
→t q and(p, q) ∈ R1. Then we also haveq1 + q2

a
→t q and(p, q) ∈ R1. From this it follows,

takeq∗ = q1 + q2, that there existq∗ andq such thatq1 + q2 ⇒ q∗
a
→t q and(p1 + p2, q

∗) ∈ R and
(p, q) ∈ R.

– Suppose thatp1 +p2
τ
→ p for some closed termp. Then, by inspection of the deduction rules it follows

thatp1
τ
→ p or p2

τ
→ p. The two cases are symmetrical, thus we only consider the case thatp1

τ
→ p.

Since(p1, q1) ∈ R1 andR1 is a branching bisimulation relation that satisfies the rootcondition for
(p1, q1) it follows that there exists a closed process termq such thatq1

τ
→ q and(p, q) ∈ R1. Then we

also haveq1 + q2
τ
→ q and(p, q) ∈ R1. From this it follows, takeq∗ = q1 + q2, that there existq∗ and

q such thatq1 + q2 ⇒ q∗
(τ)
→ q and(p1 + p2, q

∗) ∈ R and(p, q) ∈ R.
– Suppose thatp1 + p2 ↓t for somet ∈ Time. Thenp1 ↓t or p2 ↓t. These cases are symmetrical, thus

we only consider the first case. Since(p1, q1) ∈ R1 andR1 is a branching bisimulation relation that
satisfies the root condition for(p1, q1) it follows thatq1 ↓t. Then we also haveq1 + q2 ↓t. From this it
follows, takeq∗ = q1 + q2, that there exists aq∗ such thatq1 + q2 ⇒ q∗ ↓t and(p1 + p2, q

∗) ∈ R.
– Suppose thatp1 +p2  t for somet ∈ Time. Thenp1  t or p2  t. These cases are symmetrical, thus

we only consider the first case. Since(p1, q1) ∈ R1 andR1 is a branching bisimulation relation that
satisfies the root condition for(p1, q1) it follows thatq1  t. Then we also haveq1 + q2  t. From this
it follows, takeq∗ = q1+q2, that there exists aq∗ such thatq1+q2 ⇒ q∗  t and(p1+p2, q1, q2) ∈ R.

As a part of the above proof of the transfer conditions we havealready shown that the pair(p1+p2, q1+q2)
satisfies the root condition.

B.3 Time initialisation

Assume thatp ↔rb q. Furthermore, assume thatR is the witness for this assumption. Define

R′ = {(t ≫ p′, t ≫ q′) | (p′, q′) ∈ R} ∪ R.
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It is trivial that the pairs fromR′ that are also inR satisfy the transfer conditions of timed branching
bisimilarity. Thus it remains to verify this for the pairs(t ≫ p′, t ≫ q′) with (p′, q′) ∈ R. Thereto,
consider arbitraryp′ andq′ such that(p′, q′) ∈ R.

– Suppose thatt ≫ p′
a
→u p′′ for somea ∈ Act, u ∈ Time, and closed process termp′′. By inspection

of the deduction rules his must be due top′
a
→u p′′ andt ≤ u. Since(p′, q′) ∈ R andR is a branching

bisimulation relation it follows that there existq∗ andq′′ such thatq′ ⇒ q∗
a
→u q′′ and(p′, q∗) ∈ R

and (p′′, q′′) ∈ R. But then alsot ≫ q′ ⇒ t ≫ q∗
a
→u q′′ and (t ≫ p′, t ≫ q∗) ∈ R′ and

(p′′, q′′) ∈ R′.

– Suppose thatt ≫ p′
τ
→ p′′ for some closed process termp′′. By inspection of the deduction rules his

must be due top′
τ
→ p′′′ for somep′′′ such thatp′′ = t ≫ p′′′. Since(p′, q′) ∈ R andR is a branching

bisimulation relation it follows that there existq∗ andq′′′ such thatq′ ⇒ q∗
(τ)
→ q′′′ and(p′, q∗) ∈ R

and(p′′′, q′′′) ∈ R. But then alsot ≫ q′ ⇒ t ≫ q∗
(τ)
→ t ≫ q′′′ and(t ≫ p′, t ≫ q∗) ∈ R′ and

(t ≫ p′′′, t ≫ q′′′) ∈ R′.
– Suppose thatt ≫ p′ ↓u for someu ∈ Time. This must be due top′ ↓u andt ≤ u. Since(p′, q′) ∈ R

andR is a branching bisimulation relation it follows that there exists aq∗ such thatq′ ⇒ q∗ ↓u and
(p′, q∗) ∈ R. But then alsot ≫ q′ ⇒ t ≫ q∗ ↓u and(t ≫ p′, t ≫ q∗) ∈ R′.

– Suppose thatt ≫ p′  u for someu ∈ Time. This must be due top′  u or u ≤ t. In the first case,
since(p′, q′) ∈ R andR is a branching bisimulation relation it follows that there exists aq∗ such that
q′ ⇒ q∗  u. and(p′, q∗) ∈ R. But then alsot ≫ q′ ⇒ t ≫ q∗  u. and(t ≫ p′, t ≫ q∗) ∈ R′. In
the second case, it immediately follows thatt ≫ q′  u. From this it follows, takeq∗ = t ≫ q′, that
there exists aq∗ such thatt ≫ q′ ⇒ q∗  u and(t ≫ p′, q∗) ∈ R′.

The proof that the pair(t ≫ p, t ≫ q) satisfies the root condition follows the same lines as the above
proofs and is therefore omitted.

B.4 Silent Step Prefix

Assume thatp ↔rb q. Furthermore, assume thatR is the witness for this assumption. Define

R′ = {(τ.p, τ.q), (τ.q, τ.p)} ∪ R.

It is trivial that the pairs fromR′ that are also inR satisfy the transfer conditions of timed branching bisim-
ilarity. Thus it remains to verify this for the pairs(τ.p, τ.q) and(τ.q, τ.p). Due to symmetry considerations
it suffices to consider the pair(τ.p, τ.q) only.

Since the process termτ.p does not have action transitions, termination predicates and delay predicates,
these cases are trivially satisfied.

– Suppose thatτ.p
τ
→ p′ for some closed termp′. Then, by inspection of the deduction rules it follows

thatp′ = p. Using the deduction rules we also obtainτ.q
τ
→ q. We also have that(p, q) ∈ R. From

this it follows, takeq∗ = τ.q andq′ = q, that there existq∗ andq′ such thatτ.q ⇒ q∗
(τ)
→ q and

(p1, q
∗) ∈ R′ and(p, q) ∈ R′.

As a part of the above proof of the transfer conditions we havealready shown that the pair(τ.p, τ.q) satisfies
the root condition.
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B.5 Abstraction

Assume thatp ↔rb q. Furthermore, assume thatR is the witness for this assumption. Define

R′ = {(τI(p
′), τI(q

′)) | (p′, q′) ∈ R} ∪ R.

It is trivial that the pairs fromR′ that are also inR satisfy the transfer conditions of timed branching
bisimilarity. Thus it remains to verify this for the pairs(τI(p

′), τI(q
′)) with (p′, q′) ∈ R. Thereto, consider

arbitraryp′ andq′ such that(p′, q′) ∈ R.

– Suppose thatτI(p
′)

a
→u p′′ for somea ∈ Act, u ∈ Time, and closed process termp′′. By inspection

of the deduction rules his must be due toa 6∈ I andp′
a
→u p′′′ for some closed termp′′′ such that

p′′ = τI(p
′′′). Since(p′, q′) ∈ R and R is a branching bisimulation relation it follows that there

exist q∗ and q′′′ such thatq′ ⇒ q∗
a
→u q′′′ and (p′, q∗) ∈ R and (p′′′, q′′′) ∈ R. But then also

τI(q
′) ⇒ τI(q

∗)
a
→u τI(q

′′′) and(τI(p
′), τI(q

∗)) ∈ R′ and(τI(p
′′′), τI(q

′′′)) ∈ R′.
– Suppose thatτI(p

′)
τ
→ p′′ for some closed process termp′′. By inspection of the deduction rules his

must be due to (1)a ∈ I andp′
a
→t p′′′ for somep′′′ andt ∈ Time such thatp′′ = t ≫ p′′′, or due to

(2) p′
τ
→ p′′′ for some closed termp′′′ such thatp′′ = τI(p

′′′).
In the first case, since(p′, q′) ∈ R andR is a branching bisimulation relation it follows that there
exist q∗ and q′′′ such thatq′ ⇒ q∗

a
→t q′′′ and (p′, q∗) ∈ R and (p′′′, q′′′) ∈ R. But then also

τI(q
′) ⇒ τI(q

∗)
a
→t τI(q

′′′) and(τI(p
′), τI(q

∗)) ∈ R′ and(τI(p
′′′), τI(q

′′′)) ∈ R′.
In the second case, since(p′, q′) ∈ R andR is a branching bisimulation relation it follows that there

exist q∗ and q′′′ such thatq′ ⇒ q∗
(τ)
→ q′′′ and (p′, q∗) ∈ R and (p′′′, q′′′) ∈ R. But then also

τI(q
′) ⇒ τI(q

∗)
(τ)
→ τI(q

′′′) and(τI(p
′), τI(q

∗)) ∈ R′ and(τI(p
′′′), τI(q

′′′)) ∈ R′.
– Suppose thatτI(p

′) ↓t for somet ∈ Time. This must be due top′ ↓t. Since(p′, q′) ∈ R andR is a
branching bisimulation relation it follows that there exists aq∗ such thatq′ ⇒ q∗ ↓t and(p′, q∗) ∈ R.
But then alsoτI(q

′) ⇒ τI(q
∗) ↓t and(τI(p

′), τI(q
∗)) ∈ R′.

– Suppose thatτI(p
′) t for somet ∈ Time. This must be due top′  t. Since(p′, q′) ∈ R andR is a

branching bisimulation relation it follows that there exists aq∗ such thatq′ ⇒ q∗  t and(p′, q∗) ∈ R.
But then alsoτI(q

′) ⇒ τI(q
∗) t and(τI(p

′), τI(q
∗)) ∈ R′.

B.6 Sequential Composition

Assume thatp1 ↔rb q1 and thatp2 ↔rb q2. Furthermore, assume thatR1 andR2 are the witnesses for
these assumptions. Define

R = {(p′1 · p2, q
′
1 · q2), (q

′
1 · q2, p

′
1 · p2) | (p′1, q

′
1) ∈ R1} ∪ R≫2

,

whereR≫2
is the relation that is used to prove congruence with respectto the time-initialisation operator,

takingR2 for R.

For the proof that the pairs fromR≫2
also satisfy the transfer conditions please refer to the proof of

congruence with respect to the time-initialisation operator. Thus it remains to verify this for the pairs
(p′1 · p2, q

′
1 · q2) and(q′1 · q2, p

′
1 · p2) with (p′1, q

′
1) ∈ R1. Due to symmetry considerations it suffices to

consider the pairs(p′1 · p2, q
′
1 · q2). Thereto, consider arbitraryp′1 andq′1 such that(p′1, q

′
1) ∈ R1.

– Suppose thatp′1 · p2
a
→t p for somea ∈ Act, t ∈ Time, and closed termp. Then, by inspection of the

deduction rules it follows thatp′1
a
→t p′ for somep′ such thatp = p′ · p2, or p′1 ↓u andu ≫ p2

a
→t p

for someu ∈ Time. In the first case, since(p′1, q
′
1) ∈ R1 andR1 is a branching bisimulation relation
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it follows that there existq∗ andq such thatq′1 ⇒ q∗
a
→t q and(p′1, q

∗) ∈ R1 and(p′, q) ∈ R1. But
then alsoq′1 · q2 ⇒ q∗ · q2

a
→t q · q2 and(p′1 · p2, q

∗ · q2) ∈ R and(p′ · p2, q · q2) ∈ R.
In the second case, by inspection of the deduction rules it follows thatp2

a
→t p andu ≤ t. Since

(p′1, q
′
1) ∈ R1 andR1 is a branching bisimulation relation it follows that there exists aq such that

q′1 ⇒ q ↓u and(p′1, q) ∈ R1. And since(p2, q2) ∈ R2 andR2 is a branching bisimulation relation
that satisfies the root condition for(p2, q2) it follows that there exists aq′ such thatq2

a
→t q′ and

(p, q′) ∈ R2. Due tou ≤ t we also haveu ≫ q2
a
→t q′. But then alsoq′1 · q2 ⇒ q · q2

a
→t q′ and

(p′1 · p2, q · q2) ∈ R and(p, q′) ∈ R.
– Suppose thatp′1 · p2

τ
→ p for some closed termp. Then, by inspection of the deduction rules it follows

thatp′1
τ
→ p′ for somep′ such thatp = p′ ·p2, orp′1 ↓u andu ≫ p2

τ
→ p for someu ∈ Time. In the first

case, since(p′1, q
′
1) ∈ R1 andR1 is a branching bisimulation relation it follows that there exist q∗ and

q such thatq′1 ⇒ q∗
(τ)
→ q and(p′1, q

∗) ∈ R1 and(p′, q) ∈ R1. But then alsoq′1 · q2 ⇒ q∗ · q2
(τ)
→ q · q2

and(p′1 · p2, q
∗ · q2) ∈ R and(p′ · p2, q · q2) ∈ R.

In the second case, by inspection of the deduction rules it follows that there exists ap′ such thatp2
τ
→ p′

andp = u ≫ p′. Since(p′1, q
′
1) ∈ R1 andR1 is a branching bisimulation relation it follows that there

exists aq such thatq′1 ⇒ q ↓u and(p′1, q) ∈ R1. And since(p2, q2) ∈ R2 andR2 is a branching
bisimulation relation that satisfies the root condition for(p2, q2) it follows that there exists aq′ such
thatq2

τ
→ q′ and(p′, q′) ∈ R2. Then we also haveu ≫ q2

τ
→ u ≫ q′ and(u ≫ p′, u ≫ q′) ∈ R≫.

But then alsoq′1 · q2 ⇒ q · q2
τ
→ u ≫ q′ and(p′1 · p2, q · q2) ∈ R and(p, u ≫ q′) ∈ R.

– Suppose thatp′1 · p2 ↓t for somet ∈ Time. This must be due top′1 ↓u andu ≫ p2 ↓t for some
u ∈ Time. Furthermore, from inspection of the deduction rules it follows thatp2 ↓t andu ≤ t. Since
(p′1, q

′
1) ∈ R1 andR1 is a branching bisimulation relation it follows that there exists aq∗ such that

q′1 ⇒ q∗ ↓u and(p′1, q
∗) ∈ R1. And since(p2, q2) ∈ R2 andR2 is a branching bisimulation relation

that satisfies the root condition for(p2, q2) it follows thatq2 ↓t. Due tou ≤ t we also haveu ≫ q2 ↓t.
But then alsoq′1 · q2 ⇒ q∗ · q2 ↓t and(p′1 · p2, q

∗ · q2) ∈ R.
– Suppose thatp′1 · p2 ;t for somet ∈ Time. This must be due top′1 ;t or p′1 ↓u andu ≫ p2 ;t for

someu ∈ Time. In the first case, since(p′1, q
′
1) ∈ R1 andR1 is a branching bisimulation relation it

follows that there exists aq∗ such thatq′1 ⇒ q∗ ;t and(p′1, q
∗) ∈ R1. But then alsoq′1·q2 ⇒ q∗·q2 ;t

and(p′1 · p2, q
∗ · q2) ∈ R.

In the second case, by inspection of the deduction rules it follows that p2 ;t and u ≤ t. Since
(p′1, q

′
1) ∈ R1 andR1 is a branching bisimulation relation it follows that there exists aq∗ such that

q′1 ⇒ q∗ ↓u and(p′1, q
∗) ∈ R1. And since(p2, q2) ∈ R2 andR2 is a branching bisimulation relation

that satisfies the root condition for(p2, q2) it follows that q2 ;t. Due tou ≤ t we also haveu ≫
q2 ;t. But then alsoq′1 · q2 ⇒ q∗ · q2 ;t and(p′1 · p2, q

∗ · q2) ∈ R.

The proof that the pair(p′1 ·p2, q
′
1 ·q2) satisfies the root condition follows the same lines as the above proofs

and is therefore omitted.

B.7 Parallel Composition

Assume thatp1 ↔rb q1 and thatp2 ↔rb q2. Furthermore, assume thatR1 andR2 are the witnesses for these
assumptions. DefineR≫1

to be the smallest relation such thatR1 ⊆ R≫1
and if (p, q) ∈ R≫1

then also
(t ≫ p, t ≫ q) ∈ R≫1

. DefineR≫2
to be the smallest relation such thatR2 ⊆ R≫2

and if (p, q) ∈ R≫2

then also(t ≫ p, t ≫ q) ∈ R≫2
. Define

R = {(p′1 ‖ p′2, q
′
1 ‖ q′2) | (p′1, q

′
1) ∈ R≫1

∧ (p′2, q
′
2) ∈ R≫2

}.

We first prove thatR≫1
andR≫2

are branching bisimulation relations. The proofs forR≫1
andR≫2

are
essentially the same, thus we will only give the proof forR≫1

. We do this by induction on the construction
of relationR≫1

.
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– Suppose that a pair is inR≫1
since it is inR1. The transfer conditions hold trivially for such a pair

sinceR1 is assumed to be a rooted branching bisimulation relation.
– Suppose that a pair is inR≫1

because it is of the form(t ≫ p, t ≫ q) for somep andq such that
(p, q) ∈ R≫1

. By induction we have that the pair(p, q) satisfies the transfer conditions. Then, by the
proof of congruence with respect to the time-initialisation operator, we have that the transfer conditions
hold for (t ≫ p, t ≫ q).

It remains to verify that the transfer conditions hold for the pairs(p′1 ‖ p′2, q
′
1 ‖ q′2) with (p′1, q

′
1) ∈ R≫1

and
(p′2, q

′
2) ∈ R≫2

. Thereto, consider arbitraryp′1, q′1, p′2 andq′2 such that(p′1, q
′
1) ∈ R≫1

and(p′2, q
′
2) ∈ R≫2

.

– Suppose thatp′1 ‖ p′2
a
→t p for somea ∈ Act, t ∈ Time, and closed termp. Then, by inspection of the

deduction rules it follows thatp′1
a
→t p′ andp′2  t for somep′ such thatp = p′ ‖ t ≫ p′2, orp′2

a
→t p′

andp′1  t for somep′ such thatp = t ≫ p′1 ‖ p′. Assume the first case. Since(p′1, q
′
1) ∈ R≫1

and
R≫1

is a branching bisimulation relation it follows that there exist q∗1 andq such thatq′1 ⇒ q∗1
a
→t q

and(p′1, q
∗
1) ∈ R≫1

and(p′, q) ∈ R≫1
. Furthermore, since(p′2, q

′
2) ∈ R≫2

andR≫2
is a branching

bisimulation it follows that there exists aq∗2 such thatq′2 ⇒ q∗2  t and(p′2, q
∗
2) ∈ R≫2

. But then also
q′1 ‖ q′2 ⇒ q∗1 ‖ q′2 ⇒ q∗1 ‖ q∗2

a
→t q ‖ t ≫ q∗2 and(p′1 ‖ p′2, q

∗
1 ‖ q∗2) ∈ R and(p′ ‖ t ≫ p′2, q ‖ t ≫

q∗2) ∈ R. The alternative case is symmetric to this one.
– Suppose thatp′1 ‖ p′2

τ
→ p for some closed termp. Then, by inspection of the deduction rules it

follows thatp′1
τ
→ p′ for somep′ such thatp = p′ ‖ p′2, or p′2

τ
→ p′ for somep′ such thatp = p′1 ‖ p′.

Assume the first case. Since(p′1, q
′
1) ∈ R≫1

andR≫1
is a branching bisimulation relation it follows

that there existq∗1 andq such thatq′1 ⇒ q∗1
(τ)
→ q and(p′1, q

∗
1) ∈ R≫1

and(p′, q) ∈ R≫1
. But then also

q′1 ‖ q′2 ⇒ q∗1 ‖ q′2
(τ)
→ q ‖ q′2 and(p′1 ‖ p′2, q

∗
1 ‖ q′2) ∈ R and(p′ ‖ p′2, q ‖ q′2) ∈ R. The alternative

case is symmetric to this one.
– Suppose thatp′1 ‖ p′2 ↓t for somet ∈ Time. Then, by inspection of the deduction rules it follows that

p′1 ↓t andp′2 ↓t. Since(p′1, q
′
1) ∈ R≫1

andR≫1
is a branching bisimulation relation it follows that

there exists aq∗1 such thatq′1 ⇒ q∗1 ↓t and(p′1, q
∗
1) ∈ R≫1

. Furthermore, since(p′2, q
′
2) ∈ R≫2

and
R≫2

is a branching bisimulation relation it follows that there exists aq∗2 such thatq′2 ⇒ q∗2 ↓t and
(p′2, q

∗
2) ∈ R≫2

. But then alsoq′1 ‖ q′2 ⇒ q∗1 ‖ q′2 ⇒ q∗1 ‖ q∗2 ↓t and(p′1 ‖ p′2, q
∗
1 ‖ q∗2) ∈ R.

– Suppose thatp′1 ‖ p′2  t for somet ∈ Time. Then, by inspection of the deduction rules it follows that
p′1  t andp′2  t. Since(p′1, q

′
1) ∈ R≫1

andR≫1
is a branching bisimulation relation it follows that

there exists aq∗1 such thatq′1 ⇒ q∗1  t and(p′1, q
∗
1) ∈ R≫1

. Furthermore, since(p′2, q
′
2) ∈ R≫2

and
R≫2

is a branching bisimulation relation it follows that there exists aq∗2 such thatq′2 ⇒ q∗2  t and
(p′2, q

∗
2) ∈ R≫2

. But then alsoq′1 ‖ q′2 ⇒ q∗1 ‖ q′2 ⇒ q∗1 ‖ q∗2  t and(p′1 ‖ p′2, q
∗
1 ‖ q∗2) ∈ R.

The proof that the pair(p1 ‖ p2, q1 ‖ q2) satisfies the root condition follows the same lines as the above
proofs and is therefore omitted.
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