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Abstract. This paper discusses action abstraction in timed process algebrasb#eis/ed that the
leading approaches to action abstraction in timed process algebra all imairgdaiming of actions,
even if these are abstracted from.

This paper presents a novel approach to action abstraction in timedspralggebras. Characteristic
for this approach is that in abstracting from an action, also its timing is abstrérom. We define an
abstraction operator and a timed variant of rooted branching bisimilarityatablish that this notion
is an equivalence relation and a congruence.

1 Introduction

One of the main tools in analysing processes in a procesbralgetting is abstraction. Abstraction allows
for the removal of information that is regarded as unobd#evéor irrelevant) for the verification purpose
at hand. Abstraction is introduced in the form of an actiostedztion operator, called hiding, or in the
form of data abstraction through abstract interpretatibmaction hiding, certain action names are made
anonymous and/or unobservable by replacing them by a pnedisfient step(also called internal action)
denoted byr.

In the field of untimed process algebra, there is reasonalnlgansus about the properties of the silent step.
In ACP-style process algebras [BK84] the notion of (roote@nching bisimilarity, as put forward by Van
Glabbeek and Weijland in [GW89,GW96], is mostly adopted. Téwe fimed versions of rooted branch-
ing bisimilarity found in the literature (see [KIu93,BBZ%ya01]) all agree on maintaining the timing of
actions, even if these actions are abstracted from. In dhede approaches the passing of time by itself
(i.e., without subsequent action execution or termindtaam be observed. As a consequence, not as many
identifications between processes can be made as is dedwabkrification purposes.

Therefore, we study an action abstraction mechanism thaimy abstracts from an action, but also from
its timing. We introduce amntimed silent stefnto a timed process algebra. We define a timed version
of rooted branching bisimilarity based on this untimedrtilstep, show that it is an equivalence and a
congruence, and present a remarkably straightforwardreatisation for this notion of equivalence. We
give a short account of the identifications between prosess can be obtained using this equivalence.
This is done by showing simplifications of the PAR protocahgsthe notions of equivalence from the
literature and the notion introduced in this paper.

It should be mentioned that when studying timed procesdadgeor timed automata for that matter), one
encounters a number of different interpretations of therattion between actions and time. There are the
so-called two-phase models, where the progress of time éehad separately from action execution, and
there is the time-stamped setting, where time progress etiwhaexecution are modeled together. Two-
phase models are used in [BM02], and time-stamped model®anel in timeduCRL [RGvdZvWO02],

for example. In this paper, we study timed rooted branchisigrilarity in the context of an absolute time,
time-stamped model.



Structure First, we introduce a simple timed process algebra with labsdiming and a time-stamped
model (Section 2). This process algebra serves as a vebiotef discussions on abstraction and equality
of processes. It contains primitives that are fundameatattually every timed process algebra. In Section
3, we discuss the notions of timed rooted branching bisiitjlas they are encountered in the literature.
In Section 4, we adapt the timed process algebra to incampora ideas for abstraction and equality for
timed processes interpreted in a time-stamped model. IticB€es, we illustrate the consequences of our
definitions on the PAR protocol. In Section 6, we presentmsidor timed strong bisimilarity and timed
rooted branching bisimilarity. In Section 7, we discuss e@tandard extensions of our rather minimal
setting in some limited depth. In Section 8, we discuss thesipdities and impossibilities of adapting our
notions to other settings in timed process algebra fromitkature. Section 9 wraps up the paper.

2 The Universe of Discourse

In this section, we introduce a simple time-stamped proakgra without abstraction that serves well for
(1) a more formal exposition of our discomfort with the exigtways of dealing with abstraction in timed
process algebra, (2) a discussion of the possible solytams(3) the treatment of the chosen solution.

The timed process algebra presented in this seﬁSE’;@bs (for Basic Sequential Processeith absolute

time andtime-stampinyy is an extension of the process the®§P from [BBRO7] with absolute-timing
and time-stamping (both syntactically and semanticalhgpired by the process algehiened nCRL
[RGvdzvWO02f.

We first present the starting point of our deliberations. \&&suae a sel'ime that is totally ordered by
< with smallest elemend that represents the time dom&iwe also assume a sdict of actions,not
containingr.
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The signature of the process algeB@P , . consists of the following constants and operators:

— for eacht € Time, a timed deadlock constaff. The proces§®? idles upto timet and then dead-
locks.

— for eacht € Time, a timed termination constanf*. The procesd®! idles upto timet and then
terminates successfully.

— for eacha € Act andt € Time, an action prefix operatar®._. The process®’.p represents the
process that idles upto timeexecutes action at that time and after that behaves as progdssofar
time allows.

— the alternative-composition operator- . The procesp + ¢ represents the nondeterministic choice
between the processgsndg. The choice is resolved by the execution of an action or anroence
of a termination.

— for eacht € Time, a time-initialisation operator > . The process$ > p is p limited to those
alternatives that execute their first action not before time

Terms can be constructed using variables and the elementstliie signature. Closed terms are terms in
which no variables occur. We decide to allow the executiomofe than one action at the same moment of
time (in some order). There are no fundamental reasonsifochioice: we could equally well have adopted
the choice to disallow sualirgentactions.

Next, we provide a structured operational semantics forctheed terms from this process algebra. We
define the following transition relations and predicates:

! Note that in the original semantics of timg@’RL [Gro97], a two-phase model is used with states consisting of a
closed process term and a moment in time, and separate action tranéitiang a time transition’ .
2 It does not matter for the treatment whether this time domain is discretmeede



— a time-stamped action-transition relation%, _ (with « € Act andt € Time), representing the
execution of an action at timet.

— a time-stamped termination predicate|, (with ¢ € Time), representing successful termination at
timet.

— atime-parameterised delay predicate»; (with ¢ € Time), representing that a process can delay until
at least time.

The reason for including the delay predicate is to discratérbetween differently timed deadlocks: we
have0®3 ~-3, wherea®)®? ,~3. These transition relations and predicate are defined bysneha so-
called term deduction system [AFV01]. The deduction rules@esented in Table 1. In this table and
others in the rest of this paper, 2/, y, andy’ are variables representing arbitrary process teanss Act

is an action name, C Act, andt, u € Time.
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Table 1. Structured Operational SemanticsRSPS
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Strong timed bisimilarity (as defined in [RGvdZvW02], for exgle) is a congruence for all operators from
this process algebra. One can quite easily obtain a souncbamglete axiomatisation of strong bisimilarity.
The details are omitted as they are of no importance to theajdlais paper.

3 Abstraction and the Timed Silent Step

In order to facilitate abstraction of actions, usually acsgleatomic actionr ¢ Act is assumed that repre-
sents annternal actionor silent stepAlso, an abstraction operatey (for I C Act) is used for specifying
which actions need to be considered internal. This leadsstdaflowing extensions to the signature of the
process algebra:

— for eacht € Time, a silent step prefix operatet®t._. The process®*.p represents the process that
idles upto timet, executes silent step at that time and after that behaves as progessofar time
allows.

— for eachl C Act, an abstraction operatat. The process;(p) represents procegsin which all
actions from the sef are made invisible (i.e., replaced by silent st¢p

To express execution of a silent step at a certain tithe predicate —, _is used. The silent step prefix
operator has precisely the same deduction rules as thengmtfix operator (withu replaced byr). The
deduction rules for the abstraction operator are givervbelo

x5, 2 5
- lagl] —————ael]
() = 71(2) m1(x) —¢ T1(2)
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Again, congruence of timed strong bisimilarity is obviousi@btaining a sound and complete axiomatisa-
tion of timed strong bisimilarity is not difficult either.

Timed Rooted Branching Bisimilarity In the rest of this section, we discuss several timed vessibthe
well-known notion of rooted branching bisimilarity [GW8N®6] that appeared in the literature. We refer
to the relevant literature for definitions of these notide.only present some characteristic equalities and
inequalities between processes to illustrate the notions.

In [Klu93, Chapter 6], Klusener defines notions of rootedethibranching bisimilarity for a timed process
algebra in a setting that does not allow for consecutiveoastiat the same moment in time, i.e., non-
urgent actions. Two semantics and equivalences are defioduin a setting with time-stamped action
transitions. The first semantics, the so-caltid semantics employs idle transitions to model time passing.
The second, called thierm semantics, uses an ultimate delay predicate instead. &@bestic for the
equivalences is that an action transitioat timet in one process may be mimicked in another process by
a well-timed sequence (i.e., a sequence in which the timirifeosubsequent actions does not decrease)
of silent steps that is ultimately followed by amtransition at timet. The intermediate states need to
be related with the original state (at the right moment inefinKlusener shows that in his setting these
two semantics and equivalences coincide. In almost the safttiag’, using the term semantics, Fokkink
proves a completeness result for the algebra of regulaepses [Fok94,Fok97]. By means of the following
examples we will discuss the equivalences of Klusener.

Example 1 (No-Choice Silent Stefihe three processes; (a®!.692.c?4.09%), 75y (a®!.693.c*4.097)
anda®!.c®4.0%> are obviously considered equal. Thus, the timing of theoacthat is hidden is of no
importance insofar it does not disallow other actions frarousring (due to ill-timedness).

Example 2 (Time-Observed Silent Stafije processes,; (a®!.(b92.(c*3.091 4+ d93.091) + d3.091))
anda®!.(c®2.094 + d“3.0°4) are distinguished by the notion of rooted timed branchirsgntilarity from
[KIu93, Chapter 6]. The reason is that in the first processrat P it may be determined that tiewill be
executed at time 3, while in the latter process term the ehoétween the and thed at 3 can not be done
earlier than at time 3.

Example 3 (Swapping)The processes;(a®!.(b92.c®3.09* + d93.091)) and 7y (a®!.(c*3.09* +
b®2.d93.09)) are considered equal with respect to Klusener’s notion oy, since in both processes
it is decided at time 2 whether theor thed will be executed at time 3.

It is interesting to note that, if one considers Klusenee8rdtion of timed rooted idle branching bisimilar-
ity in a setting in which urgent actions are allowed, the sviag of silent steps as portrayed in this example
does not hold anymore. With timed rooted branching bisintylas defined for the term semantics though,
it remains valid.

Example 4 (Time-Choice). According to [KIu93] the processes; (a®!.(b92.0%* + ¢©2.091)) and

a®l. (094 + c92.094) are equal, since the passage of time already decides at time 2whether or
not the alternative®2.0** occurs or not.

Baeten and Bergstra introduce the silent step to relative,tabsolute time and parametric time (i.e., a
mixture of both relative and absolute time) versions of ACEhwliscrete time in [BB95]. A difference

8 Fokkink uses a relative-time syntax and semantics and defines the ultietayepdedicate slightly different.



with the work of Klusener is that time steps are explicit i #yntax in [BB95]. In [BBR00], a complete
axiomatisation for timed rooted branching bisimilaritypi®vided, for a variant of this theory. With respect
to the four examples presented before, the only differerstevden Klusener’s notion and Baeten and
Bergstra’s notion is that the latter doest consider the processes from Example 3 (Swapping) equal.

In [Zwa01], Van der Zwaag defines a notion of timed branchiisgilarity for a process algebra that has
almost the same syntax and semantics as ours. In the settiigdsby Van der Zwaag there is no successful
termination. In [FPWO05], Fokkink et al show that the notiortiofed branching bisimilarity as put forward
by Van der Zwaag is not an equivalence for dense time domaidgteerefore present a stronger notion
of timed branching bisimilarity that is an equivalence iedeAlso, the definitions are extended to include
successful termination. These notions of timed rooteddiviaug bisimilarity are similar to that of Baeten
and Bergstra for the examples presented before.

The way in which abstraction of actions leads to very prégisemed silent steps can be considered prob-
lematic (from a practical point of view). This was also reaisgd by Baeten, Middelburg and Reniers in
[BMRO02] in the context of a relative-time discrete-time pess algebra with two-phase time specifications.
The equivalences as described above are not coarse enqugittical cases such as the PAR protocol. An
attempt is made to establish a coarser equivalence (caitdaat branching bisimilarity) that “treats an
internal action always as redundant if it is followed by aga®s that is only capable of idling till the next
time slice.” This leads to an axiom (named DRTB4) of the fogmy (a®*.z) = 7(,; (¢ > ) (in a different
syntax).

Although we support the observation of the authors from [BMRhat a coarser notion of equivalence is
needed, we have several problems with the treatment ofsi®iin [BMRO02]. The first is that the authors
have sincere problems in defining the equivalence on thetated operational semantics. This problem is
ultimately solved by using the (standard) definition of mmbbranching (tail) bisimilarity from [BBROO]

in combination with a structured operational semantictitha silent-step-saturated version of the original
semantics. Second, the axioms for standard operators symrallel composition need to be adapted in a
non-trivial way.

4 Untimed Silent Step

In this section, we present a novel abstraction mechanisimigd process algebra that is inspired by the
opinion thatthe timing of a silent step as such is not observablerefore, one might consider defining an
abstraction operator that abstracts from an actiothfrom its timing. One should be careful though, that
abstraction from the timing of actianmay not result in an abstraction of the consequences ofithisg

of a for the rest of the process!

In the next section, we formally present our novel approachction abstraction in timed process alge-
bras. First we give the consequences of our intuition abdoeitequality (called timed rooted branching
bisimilarity, denoted by, , see Section 4.2 for a definition) of the example processes the previous
section.

The timing of the action that is hidden is of no importancefasit does not disallow other actions from oc-
curring (due to ill-timedness). Therefore, the processan Example 1 (No-Choice) should be considered
equal:

a@l.b@2.c@4.0@5)

@1.b@3.0@4.0@5) a@l.c@4.0@5

(v} ( = Tya o

rb

The processes from Example 2 (Time-Observed Silent Stepaual in our setting since we do not wish
to consider the timing of the internal step relevant:

T{b}(a@l.(b@Q.(C@3.0@4 +d@3.0@4) +d@3.0@4)) P a@l.(c@3.0@4 +d@3.0@4)



The processes from Example 3 (Swapping) are different pe@se since by executing the silent step, an
option that was there before has disappeared:

T{b}(a@l.(b@2.0@3.0@4 +d@3.0@4)) s T{b}(a@l.(0@3.0@4 +b@2.d@3.0@4))

Since we do not allow to take the timing of the abstractedadtito account, we cannot have the equality
of the processes from Example 4 (Time-Choice):

T{b}(a@l.(b@3.0@4 +C@2.0@4)) @ a@l.(0@4 +C@2.0@4)

In contrast with the other equivalences discussed in thpspghe process,, (a®!.(b92.0%* 4 ¢#2.094))
can only be ‘simplified’ taz®*.(7.09* + ¢®2.094). Thus the silent step remains.

In our opinion, in [BMRO02] too many silent steps can be onditt€onsider for example the process
T{a} (@¥1.09% + 5@3.09%). In [BMROZ2], it is considered to be equal #3.0“*. In our opinion, the execu-
tion of the internal step disables the execution of actialtogether.

4.1 Abstraction using the Untimed Silent Step

We propose to extend the process algebra from Section 2hétfotlowing primitives instead of the timed
silent action prefix operators and abstraction operaton fe@ction 3:

— the silent step prefix operator_. The process.p performs an internal action (not at any specific time)
and thereafter behavesas

— foreachl C Act, the abstraction operatey. The process; (p) represents procegswvhere all actions
from the set/ are made invisible (replaced by the untimed silent stept should be noted that the
consequences of the timing of the abstracted action arebstiaated from.

In the structured operational semantics, we add a relatién__that represents the execution of an untimed
silent step. For alternative composition and time inigiation we add deduction rules for this new transition
relation (the first two deduction rules in Table 2). In thes®tdeduction rule for the abstraction operator

x5z z =z
z4+yS>a y+azoa t>zLt>a T 5T
xS, xS x5
_IT g I e —ETT
T1(x) =¢ T1(2) 71(x) = 77 (") 71(x) = 77 (2)
x |4 T~
(%) Lt T1(x) ~¢

Table 2. Structured Operational Semantics of untimed silent step and abstracécatap

one can see that a timed action is replaced by an untimed stigmin case the action is to be abstracted
from. Also note that the consequences of the timing of thmaare imposed on the rest of the process
by means of the time-initialisation operator in the dedarctiule for action-transitions of the action prefix
operator (in Table 1). This means that the procgsacorporates the fact that timtehas been reached.



Example 5.Somewhat surprisingly, the procgss= a®?.7(,; (b°1.09%) is not ill-timed. This is a conse-
guence of our decision that the timing of abstracted actiwnst observable. Thus the procesis equal
to a®2.0°* and of course also t0®?.7(, (b.0%*) (which can hardly be considered ill-timed). It should
be noted that in a relative time setting this phenomenori-tifiledness does not occur.

4.2 Timed Rooted Branching Bisimilarity

In the following definition we use the notatign=- ¢ to denote thag can be reached fromby executing
an arbitrary number (possibly zero) pftransitions. The notation ) gmeang = gorp = q.

Definition 1 (Timed Rooted Branching Bisimilarity). Two closed termg and ¢ are timed branching
bisimilar, notationp«, ¢, if there exists a symmetric binary relatidd on closed terms, called &med
branching bisimulatiomelation, relatingp andgq such that for all closed termsand s with (r, s) € R:

1. ifr %, ' for somea € Act, t € Time, and closed term’, then there exist closed terms and s’
such thats = s* %, s/, (r,s*) € Rand(+, s') € R;

(r)

2. ifr 5 ¢/ for some closed tern?, then there exist closed term$ and s’ such thats = s* = s
(r,s*) € Rand(r',s') € R;

3. ifr | for somet € Time, then there exists a closed tewhsuch thats = s* |; and(r, s*) € R;

4. ifr ~», for somet € Time, then there exists a closed teghsuch thats = s* ~; and(r, s*) € R.

If Ris a timed branching bisimulation relation, we say that tlaér gp, ¢) satisfies theoot conditionwith
respect taR if

1. ifp 5, p’ for someu € Act, t € Time, and closed termp’, then there exists a closed tegfisuch that
q%, ¢ and(p',q) € R;

2. ifp = p for some closed termy, then there exists a closed terfisuch thaty = ¢’ and(p’, ¢') € R;

. ifp |, for somet € Time, theng |,.

4. if p ~, for somet € Time, theng ~,.

w

Two closed termpg andgq are calledtimed rooted branching bisimilanotationp <, g, if there is a timed
branching bisimulation relatiorR relating p and ¢ such that the pairgp, ¢) and (¢, p) satisfy the root
condition with respect ta.

4.3 Properties of Timed Rooted Branching Bisimilarity

In this section, we show that timed rooted branching bignty as defined in the previous section is
indeed an equivalence. Moreover we show that it is a congruéar the rather restricted set of operators
introduced.

Theorem 1. Timed rooted branching bisimilarity is an equivalence tila.
Proof. A proof that timed rooted branching bisimilarity is an eql@nce relation is given in Appendix A.

Theorem 2. Timed bisimilarity and timed rooted branching bisimilgraire congruences for all operators
from the signature of the process algeB&aP$

abs*



Proof. The deduction rules are in the path format, thus congruehttmed bisimilarity follows from the
meta-theory in [BV93]. See [AFVO01] for an overview of the &pf meta-theory used here. A proof of
congruence of timed rooted branching bisimilarity is giueAppendix B.

Furthermore, obviously timed rooted branching bisimilaidentifies strictly more process than timed
strong bisimilarity does.

Theorem 3. Timed strongly bisimilar processes are timed rooted bramghisimilar: i.e.,—- C <, .
Proof. Trivial.

From the examples presented in the previous sections, weasly conclude that our notion of equality
is incomparable with the notions from Klusener [Klu93], Baeand Bergstra [BB95], and Van der Zwaag
[Zwa01]. We claim that the notion of abstract branchingrpifarity from [BMRO02] is coarser than ours.

5 Case Study: PAR Protocol

5.1 Specification of the PAR Protocol

In [BMRO2] the Positive Acknowledgement Retransmissioat@col is used to illustrate the need for a
coarser equivalence. In this paper, we will use the samegquobfor illustrating the problem and (later on)
the solution. The following informal description of the prool is almost taken verbatim from [BMRO02].

In the PAR protocol, the sende$’ waits for a positive acknowledgement before a new datumaismit-
ted. If an acknowledgement is not received within a complet¢ocol cycle, the old datum is retransmitted.
In order to avoid duplicates due to retransmission, datéasded with an alternating bit frol® = {0, 1}.
The configuration of the PAR protocol is given in Figure 1 byam&of a connection diagram. The protocol
entities are a sendé, a receiverR, a forward channek’, and a backward channél

Fig. 1. Connection diagram for the PAR protocol. The numbers on the conndict@émindicate the port numbers.

The process waits until a datund is offered at an external port (port 1). Th&mpacks it with an alternating
bit b in a frame(d, b) , and then delivers it at the port used for sending (port 35 #ssumed that this a



constant amount of times. ThenS waits until an acknowledgementk is offered at port 5. When the
acknowledgement does not arrive within a certain time jpefip), S repeats the delivery of the frame and
again waits for an acknowledgement. When the acknowledgeanewes in time,S starts waiting for a
datum again.

The receiverR waits until a frame(d, b) is offered at port 4. It unpacks it, delivers the datum at mexte
port 2 in case the bit is the right one (this takety time), and offers an acknowledgement at internal
port 6 (' time). Then the receiver goes back to waiting for a frame asecthe right bit was received the
alternating bit is flipped.

The channeld{ and L pass frames and acknowledgements, respectively. Thesaalhare supposed to
be unreliable, they may produce an error instead of passirdata. The channels requirg andt;, time
for passing the data, respectively.

In this paper, we do not present specifications for the sépgmatocol entities. We immediately give
the expanded version where all occurrences of parallel ositipn operators are removed. Note that we

have used notations such a3p that describe a potentially infinite alternative compasitconsisting of
t/

one alternative op for eacht’. We refrain from giving operational semantics for this @er, called

summation [RGvdZvWO02] or alternative quantification [Luk02

Koo = Z dX:D () Yo b erv s
t c

a(d, B MHR 5o (d) SRR (ack) RN Z

_ ot
Yape = cs(d,0)™ | 4+ & error®th Yy e
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_ @ttt @t+1
Zapt = cslack) e X 4 3 error® M Ugp v —tr—tn-t),
!
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Qt+t Qt+tx+t
C4(d, b) + K.CQ(CLCk) Tixt R'Vd,b,t+tK+t/R

— at
Uape = c3(d, b)) | 4 > error@t+k.Ud7b_t+th
k<tx

_ @t+t Qb+l
Vit = cs(ack)t L X, T 2 error P Udpirtl—tr—t),
I<tr

We obtained the above expanded version of the PAR protocalabgfully translating the version of

[BMRO02] to the process algebra that is used in this paper. @ieye that we can also define a simi-
lar parallel composition operator and we believe that we aatain the above result from expansion of
parallel-composition operators in our setting too.

5.2 Abstraction of Internal Actions using Timed Silent Stefs

The application of the abstraction operator from the previsection with
I ={e3(d,b),ca(d,b) | d € D,b e B} U{cs(ack), cg(ack),error}

to the expanded version of the PAR protocol from Section &slilts in the following recursive specifica-
tion:



Xop = Z dz;D 7 (d) Y Y b et
t S

Qt+t Qt+tg+tr ~Qt+tr+tr+t)
T +K_82(d) Tl +tr QO+t +tr+ R'Zd,b,tthKthRth/R

t

Y, = Qt+k
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Uib, = . @t+k

dbt =T + > Tt Udpt+t,
k<tx
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With respect to timed rooted branching bisimilarity as dediim the previous section, this description can
be simplified to the following:

Xpp = Z dZD () Vb ere s
t S

_ Qt+t Qt+t t Qt+k
Yape =70 sy (d) TR TR Zgpvtgertnty, 20 T Yo,
k<tg

_ @ttt Qt+l
Zapt =T L-ngtthL + Kzt: T -Ud,b,t+t’s—tK—tR—t’R
>l

_ @ttt Qt+k
Ugp =7 K Vb tttstty, + o Tt Ud,p,t+tr,
k<tg

Vot = T@t+tL-Xg7t+tL + Z T@tH-Ud,b,tth/sftht/R
I<tr,
Again, this result is just obtained by translating the reBoim [BMRO02] to our setting.

The silent steps that occur cannot be left out with respethdcstandard notion of timed rooted branch-
ing bisimilarity. Thus the abstraction from the internahwounication actions has not lead to a drastic
simplification of the process.

5.3 Abstraction of Internal Actions using Untimed Silent Seps

The following process description is obtained after alotima from the internal communications and ac-
tions from/!.
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Xos = Z dZD Tl(d)@t+t,~Yd,b,t+t'+tS
t S

Yapu =7t +tx) > s2(d) 020y einre, + 2 T(E+E) > Yo,
k<tx

Zd,b,t = T(t + tL) > Xg,t—‘rtL + Z T(t + l) > Ud,b7t+t/s—tx—tR—t3%
1<t

Uipr =7.(t +tx) > Vb ittty + oo T(t+k)> Ud,b,t+t,
k<tx

Vipe =7.(t+1t0) > X0y, + 20 7.+ 1) > Uap ity —tr—t),
1<

<tr

Observe that none of the processes execute an action biefiereand that therefore all time initialisations
disappear (usingy > tx + tr + t’ + t1). We thus get the following specification.

Xot = Zdz () Vb vt
t eD

_ @ttty tt
Yap: = 7.82(d) "R 2y yvitrerinvey, + T Yap g,
Zabt =T Xg e, TTUapittl—ti—tr—ty,
Uapt = T-Vap ittty T T-Udp it

Vape =7 X504, T T-Udp vt —ti—ty,

This way many simplifications have already been achievedilad's us to simplify the specification even
more. We can, for example, eliminaiteby substitution in/. This gives us the following equation fof:

Ud,b,t = T'(T'XE,tthKth’RthL + T~Ud,b,t+t’s) + T~Ud,b,t+t’s
Note the pattern of axioriB). With (B) we get:
Ud,b,t = T'Xg,t+t1<+th+tL + T'Ud,b,t+tg

If we also move thex +tr +t); inY to Z, we get the following specification.

fa
I

> rl(d)@t+t/'Yd,b,t+t’+tS
t' deD

Y, — Qt+tg+t !

dbt = T.SQ(d) i+ R'Zd,b,t + T.Y d,b,t+tg
!

Zd,b,t =71.X3 + T'Ud,b,t+tg

bt+tx+tr+tp+tL

Ud7b7t = T'X51t+tK+t/R+tL + T'Udvbvt""t%

Note the strong similarity of” andU. By adding an extra parameteribwe get the final specification.
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Xb,t = Z Z T‘l(d)@t+t/'Yd,b7t+t’+ts

t' deD
_ Qt+tg+t /
Yape = Tso(d)S TR UL o + T Yap e,
!/ _ . !
Ugbtu = T~Xb,t+tK+u+t’R+tL + T‘Ud,b,t+t’s,0

The silent steps that are left are essential. The silens $te}j determine whether or not an error occurred
in channelK, and those i/’ determine the same for channkl As these errors result in an additional
delay before the next action occurs, they are not redundant.

6 Axioms for Timed Rooted Branching Bisimilarity

In Table 3 we present axioms for timed strong bisimilaritieTaxioms (A1)-(A3) express some standard
properties of alternative composition. Axiom (WT) (for wéilihedness) describes that the time that is
reached by executing an action is passed on to the subsgaoents. The axioms (A6a)-(A6d) describe

the properties of timed deadlocks, especially the circantsts under which they can be removed from the
process description. An important equality that can bevedrfor closed termg is p + 09° = p.

Axioms (11)-(17) describe how the time-initialisation ajp#or can be eliminated from terms. Note that the
silent step neglects this operator (axiom (16)). Axioms J4H6) describe how the abstraction operator can
be eliminated. Note that the timing of an action that is atrséd from is passed on to the rest of the process
(axiom (H4)). The time-initialisation operator in the rigimand side of axiom (H3) is needed in order to
enforce the timing restriction from the action prefix befapplying further abstractions.

(Al) x4 y=vy T (A6a) O@t + O@u — O@max(t,u)

(A2) (z+y)+z=z+(y+=2) (ABb) u <t = 19" 09" =19

A3) z4+z==x (ABC) u <t = a®tx+0% =a% .z

(WT) a®.z =a®"t > (A6d) u <t = 7.(x +0%) + 09" = 7.(x + 0°%)
(ll) > O@u _ O@max(t,u) (Hl) T (O@t) _ O@t

(12) u<t=t>19"=0 (H2) 7r(19) =19t

(I3) u>t=1t>1%" =1

(14) u<t=t>a%"2=0% H3) a¢gI= m(a®.2)=a®71(t>2)
(5) u>t=t>»a"x=0a%2 (H4) acl= 1(a®"z)=r1711(t>>2)
(8) t>rzx=1t>cz (H5) 7r(r.x) = .71 ()

(7) t>@+y)=t>z+t>y H6) m(z+y)="7(x)+ 71(y)

Table 3. Axioms for timed strong bisimilarity and timed rooted branching bisimilarity.

We claim that the axioms from Table 3 are sound and completénfeed strong bisimilarity on closed
terms. These axioms are (of course; see Theorem 3) alsofealtdned rooted branching bisimilarity.
In Table 4, one additional axiom is presented for timed réditeanching bisimilarity. The reader should
notice that this axiom resembles the untimed axiom for mbtanching bisimilarity:.(7.(z + y) + z) =
a.(x +y) meticulously. Also, it is expected that the axioms from hiathies provide a sound and complete
axiomatisation of timed rooted branching bisimilarity dased terms.

Example 6.Consider the process term= 7, (a®!.(b*3.(c®? + d**) 4 ¢9?)). Using the axioms for
the abstraction operator and for time initialisation weeéhav= a®'.(7.3 > (c®? + d®*) + ¢®?) =
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(B) a®'.(m.(z +y) +2) = a®".(z + )

Table 4. Axiom for timed rooted branching bisimilarity.

a®l.(1.d®* 4 ¢*?). Observe that although the actibris abstracted from, its timing properties are prop-
agated. This example explains the occurrence of the tiftialisation operator in axiom (H4). Without
the occurrence of the time-initialisation operator in axiH4) the following would be valid derivations:
p=a®.(7.(¥? + d) + c9?) = a1 .(c?*? + d**) andp = a®.(7.d** + c®2). The resulting equality
of a®1.(c*? + d®*) andp = a®L.(7.d** + c*?) is completely counterintuitive.

A similar example can be constructed to show that for theragigH3) and (H4) the time initialisation
must indeed be placed inside the abstraction operator armtside.

7 Extensions of the Timed Process Algebra

In order to illustrate that our restriction to the very ligttset of operators is not inspired by fundamental
limitations, in this section we extend the timed procesladg with some operators that are frequently
encountered in timed process algebra in the ACP community.

7.1 Sequential Composition

We propose the following deduction rules for the binary ssqjal-composition operator. Compared to
such deduction rules in a setting with timed silent step wg naed to have separate deduction rules for
the untimed silent step. Also these deduction rules are acaiybe to those of sequential composition in
#CRL andmCRL2 if one neglects the fact that these languages have a diffenenination predicate.

xS, 2 Tl uS>ySy —
a ; a / T
zoySealy Ty Sy zoyDaly
Tl u>yoy oz ly u>yl T~y Ty US>y~
x-yLy’ Tyl LY~ XY g

Timed strong bisimilarity and timed rooted branching biganity are congruences for sequential compo-
sition.

Theorem 4 (Congruence).Timed bisimilarity and timed rooted branching bisimilgriare congruences
for sequential composition.

Proof. The deduction rules are in the path format, thus congruefitmed bisimilarity follows from the
meta-theory in [BV93]. A proof of congruence of timed rootednching bisimilarity is given in Appendix
B.
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In the section on future work in [FPWO05], the authors mentiwat it is an interesting question whether
a timed rooted branching bisimilarity is a congruence formapge timed basic process algebra such as
Baeten and Bergstra’s BRA[BB91] (note that this theory is called BPAin [FPWO05]) which features

time-stamped urgent actions. Although we did not addressigely this theory, foBSPf?bS extended
with sequential composition we have established congeiehtimed rooted branching bisimilarity (with
untimed silent steps).

Below we present axioms for sequential composition thatesgthe basic properties of sequential com-
position such as distributivity over alternative compiasit(axiom (A4)) and associativity (axiom (A5))
and at the same time allows for the elimination of sequentiaiposition from every closed process term
(axioms (Aba), (A5b), (A7), and (A8)).

Ad) (z+y)-z2=2-2+vy 2 (A5a) a®t .z -y = a®.(z-y) (A7) 09t . 2 = 0
AS)(z-y)-z=x-(y-2) (ABD)Tz-y=7(x-9) (A8) 1% .z =t >

It can be shown that these axioms are sound for timed stragitarity (and hence also for timed rooted
branching bisimilarity), that this extension with sequaintomposition is a conservative ground-extension
(see [BMRO5] for a definition), and that sequential compositan be eliminated from closed terms.

In, amongst others, timedCRL, the equalityr;(z - y) = 77(x) - 77(y) is valid for closed terms. As
a consequence of the introduction of the untimed silent atepits corresponding abstraction operator
this equality does not hold any longer. This can be seen bgidering the processgs= ¢°2.1°% and

q = b®1.193, Let I = {b}. Now, the process;(p - q) is timed rooted branching bisimilar to the process
a®?.0°% whereas the process(p) - 77(¢) is timed rooted branching bisimilar 1@°2.1°%, which are
obviously not timed rooted branching bisimilar.

7.2 Parallel Composition

Next we consider a parallel composition operator withouhownication. There are many different paral-
lel composition operators in the literature, especiallthwespect to termination and time-synchronisation
options. Here, we choose to mimic the termination and tigmelsronisation options of the parallel com-
position operator from [BR]: both termination and time-gress are fully synchronised between the com-
ponents.

Ii}tzl Y~ r 5 x|t Yyl T~ Y g
zlly Sea|[t>y allySa |y x|y e x|y~
ylle St>y| ylle Syl a

Timed strong bisimilarity and timed rooted branching biganity are congruences for sequential compo-
sition.

Theorem 5 (Congruence).Timed bisimilarity and timed rooted branching bisimilgriare congruences
for parallel composition.

Proof. The deduction rules are in the path format, thus congruefitsmed bisimilarity follows from the
meta-theory in [BV93]. A proof of congruence of timed rootednching bisimilarity is given in Appendix
B.
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As can be seen from the above deduction rules, the intramtucti the untimed silent step and the cor-
responding abstraction operator have no influence at adirefare, we claim that an axiomatisation can
easily be given following [RGvdZvWO02,BR].

Note that the equality; (z || y) = 77(x) || 77(y) is not valid for closed terms. This can be seen as follows.
Consider the processgs= a®'.09% andqg = °2.09% + ¢©2.0°% and the set of actions = {b} to be
abstracted from. The compositiof(p || ¢) reduces to the procea§’.(7.093 + ¢©2.09%). On the other
hand7;(p) || 77(q) reduces tar®!.(7.09% + c92.09%) + 7.a®1.093. It is not hard to see that these are
different.

8 Other Timed Process Algebra Settings

The process algebra that we have chosen as our universecotidis can be classified (both syntactically

and semantically) as an absolute-time time-stamped padgsbra. As mentioned before, in the literature

there are some other versions available, with respect tothetsyntax used and the semantics adopted. In
this section, we discuss, with respect to the semantics thewbstraction technique presented here for an
absolute-time time-stamped process algebra can be cawedo other types of timed process algebras

and what problems are expected to arise in doing so.

In a setting where the time-stamping mechanism uses relgtie the treatment becomes even simpler. In
such a setting®*.p means that is to be executedtime after the execution of the previous action (or after
the conception of the process). As a consequence of thivestaming the problem of ill-timedness is
avoided. Therefore, the time-initialisation operator bareft out. Instead, one needs to have a mechanism
for updating the relative time-stamp of the initial actimighe subsequent process due to abstraction:

a
x— 3 a€l

T[(IL') Lt® T[(l’l)

wheret ® p means that time has to be added to the time-stamp of the first visibleoadtiom p. For
example3 ® a®®.p behaves ag®%.p. An example of such an operator is the time shift operétpr (also
with negativet!) that has been used by Fokkink for defining timed branchisgrblarity in [Fok94].

We have chosen to carry out our deliberations in a time-stahgetting because this setting allows for a
very natural definition of the abstraction operator sineetiming of the action (before abstraction) and the
action itself are tightly coupled in the model. To illus&dhe difficulties that arise in defining abstraction
in a two-phase model, we look at the following processesh@styntax of [BMRO05,BR]). Note that.__is

a time step prefix operator amd_is an immediate action prefix operator.

As we have discussed in Section 4, we consider these preoegsalent. However, to express this in an
equivalence, we need to be able to relate the states of batkgses. In the diagram above one can see that
the first process can make a time transition that results fata &he black one) that has no corresponding
state in the second process. The essence of this problemtisrth tries to relate states that are reached
solely by time steps such as the black one. We thus believgoliaéion is to not relate such states, even if
they exist.
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9 Concluding Remarks

In this paper, we have introduced a notion of abstractiohdbatracts from the identity of an action and
its timing, resulting in an untimed silent step. We have ttgved an accompanying notion of equality of
processes, also called timed rooted branching bisimjilafie have shown that this notion is an equivalence
relation and a congruence for all operators consideredsmptiper and as such may be a meaningful tool
in analysing and verifying systems. A first experiment, o@ BAR protocol, indicates that our notions
allow for a much clearer and smaller representation of tis¢ratt system than the standard notions do. An
axiomatisation of timed rooted branching bisimilarity fdosed process terms is given with an axiom for
the removal of untimed silent steps that resembles the kmevn axiom from untimed process algebra.

In case one does not accept our reasoning for adopting theadsilent step, one can keep the abstraction
operator and timed silent steps (since they are considetegant) as usual and add an untimed silent step
and an abstraction operator that only abstracts from thiegiof the silent steps. This way one can control
whether or not to use untimed silent step, for example ddapgruh the properties that need to be validated.

In this paper, we have made many claims about the timed padgsbra with untimed silent steps. Of
course, these claims need to be substantiated further, Alsoworthwhile to study our notion of ab-
straction in other timed settings, most notably those watflative timing and where timing is described
by separate timing primitives (decoupled from actions)rafBM02] and most other mainstream timed
process algebras.

We have illustrated the differences and similarities betwthe different definitions of timed rooted branch-
ing bisimilarity from literature and our version by meansgémples only. A more thorough comparison is
needed. Also, a comparison with timed versions of weak liliafity (e.g., [MT92,Che93,QdFA93,HSZF93])
should be performed.

The success of an abstraction mechanism and notion of ggoatidepend only on the theoretical prop-
erties (though important) of these notions, but much morersthe practical suitability of these notions.
Therefore, we need to perform more case studies to obsergtherthese notions contribute to a bet-
ter/easier verification of correctness and/or propertigslevant systems.

We are, in line with our previous work ([BMRO05,BRY]), very @rested in obtaining a collection of theories
that are nicely related by means of conservativity resuits @mbeddings. Therefore, it is interesting to
extend the rather limited timed process algebra from thiepavith untimed action prefix operatoss

in order to formally study, in one framework, the relatioishetween rooted branching bisimilarity on
untimed processes and our timed version.

A complementary way of specifying a timed system is by mediastioned (modal) logic. It is worthwhile

to get a deeper understanding of our notion of action aligtraand timed rooted branching bisimilarity by
considering the relationship with modal logics for timedteyns as has been done for strong bisimilarity
[Par81] and Hennessy-Milner logic [HM85]. We have good hthyad the majority of the logics that are used
for the specification of properties of timed systems aregykes! by our notion of timed rooted branching
bisimilarity.

Acknowledgement®/e acknowledge useful comments from Jos Baeten, Pietep&sjjWan Fokkink, Jan
Friso Groote, Bas Luttik, Bas Ploeger, Yaroslav Usenko, BEimdWillemse.
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A Timed Rooted Branching Bisimilarity is an Equivalence

In order to conclude that timed rooted branching bisimijeais defined in Section 4.2 is an equivalence, it
has to be shown that it is reflexive, symmetric, and traresitiv

Reflexivity

The reflexivity of timed rooted branching bisimilarity folks directly from the fact that the relatigdthat
relates every closed process term to itself is a timed biagdfisimulation relation and that it satisfies the
root condition for all its pairs of closed process terms.

Symmetry

The symmetry of timed rooted branching bisimilarity follewmmediately from the requirement in the
definition of a timed branching bisimulation relation thiathas to be symmetric.

Transitivity

Lemma 1. Letp andg be processes an a timed branching bisimulation relation such that ¢) € R.
For all p’ such thatp = p’, we have that there is@ such thaty = ¢’ and(p’, ¢’) € R.

Proof. We prove this lemma by induction on the length of the deroratf =.

— p = p’ because = p’. We also haveg = ¢ and(p, q) € R.

— p = p’ because there isg@ such thapp = p* = p’. By induction we have that there isga such
thatq = ¢* and(p*,¢*) € R. The latter, withp* = p/, gives us that there akg™* andq’ such that
q" = ¢ @ ¢, (p*,¢**) € Rand(p’,¢’) € R. Becausg = ¢* = ¢** trivially meansqg = ¢**, we

haveg = ¢** 3 ¢/. Thus we have = ¢’ with (r',q') € R.

Definition 2. Let R and R’ be two relations. We define tsgmmetric compositionf R and R/, notation
Re R, asfollowsRe R = (Ro R') U(R' o R).

Obviously, the symmetric composition of two symmetricdhtions is again symmetrical.

Lemma 2. Let R and R’ be timed branching bisimulation relations. The relatiBme R’ is a timed branch-
ing bisimulation relation.

Proof. Let R and R’ be timed branching bisimulation relations and geandr be processes such that
(p,7) € Re R'. Also take procesg such thaip, q) € Rand(q,r) € R'.

1. If p %, p/, then, because dp,q) € R, we know that there arg* andq’ such thaty = ¢* %, ¢/,
(p,¢*) € Rand(p',q¢’) € R. Because ofg,r) € R’ and Lemma 1 we have that there is*asuch
thatr = * and(¢*,r*) € R'. From this, and;* %, ¢/, it follows that there are** and+’ such
thatr* = r* %, ¢/, (¢*,7*) € R and(¢’,7') € R'. Therefore we have = r** %, ¢/ with
(p,r**) € Re R and(p/,7’') € Re R'.
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2. If p = p/, then, because dbp,q) € R, we know that there arg* andq’ such thaty = ¢* @) q,

(p,q*) € Rand(p’,q') € R. Because ofg,r) € R’ and Lemma 1 we have that there is*asuch

thatr = r* and(¢*,r*) € R’. From this, andy* ) ¢, it follows that there are** andr’ such

thatr* = = ', (¢*,7**) € R and(¢’,r") € R'. Therefore we have = r** ) 1 with

(p,7**) € Re R and(p/,r') € Re R'.

3. If p |4, then, because dp,q) € R, we know that there is & such thayy = ¢’ |; and(p,¢’) € R.
Because ofg,r) € R’ and Lemma 1 we have that there is*asuch that- = »* and(¢’,r*) € R'.
From this, andy’ |;, it follows that there is &’ such that* = +’ |; and(¢’,r’) € R’. Therefore we
haver = r’ |, with (p,7’) € Re R'.

4. If p ~», then, because dp, q) € R, we know that there is & such thay = ¢’ ~; and(p,¢’) € R.
Because ofg,r) € R’ and Lemma 1 we have that there is"asuch that- = r* and (¢, r*) € r'.
From this, andy’ ~~, it follows that there is &’ such that* = ' ~», and(¢’,r’) € R’. Therefore
we haver = 1’ ~»; and(p,r’) € Re R'.

The proof for the case thép, ¢) € R’ and(q, r) € R is similar.

Theorem 6. Timed rooted branching bisimilarity—,, is transitive. That s, ip <,
alsop <, r (for all processe®,q andr).

gandg <, r, then

rb

Proof. Letp, g andr be processes such that-,,, ¢ andg <, r. This means that there are timed branching
bisimulation relationg? and R’ such tha{p, ¢) € R and(q,r) € R’ and the root condition holds f@p, q)
(with respect taR) and for (g, r) (with respect toR’). By Definition 2 we have thafp,q) € R e R’ and
Lemma 2 says thaR e R’ is a timed branching bisimulation relation. Thus, we onlgaé¢hat the root
condition holds for(p, ) with respect tak e R’, which follows straightforwardly from the fact that it hald
for (p, ¢) with respect taR and for(q, r) with respect taR’.

B Timed Rooted Branching Bisimilarity is a Congruence

In this appendix, proofs are given for congruence of timexted branching bisimilarity with respect to all
operators introduced in this paper.

B.1 Action Prefix

Assume thap <, q. Furthermore, assume thatis the witness for this assumption. Define
R = {(a®".p,a®.q), (a®".q,a*" p)} U R,
whereRs, is the relation that is used to prove congruence with redpdbe time-initialisation operator.

For the proof that the pairs frofils, satisfy the transfer conditions please refer to the proaboigruence
with respect to the time-initialisation operator. Thusdtmains to verify this for the pairg:“*.p, a®t.q)
and(a®’.q,a®*.p). Due to symmetry considerations it suffices to consider tie(p®t.p, a®t.q) only.

Since the process teraf*.p does not have silent step transitions and termination gaget, these cases
are trivially satisfied.

— Suppose that®t.p %, p’ for some closed termp’. Then, by inspection of the deduction rules it
follows thatp’ = ¢ > p. Using the deduction rules we also obtaitf.q =, t > ¢. We also have that
(t > p,t > q) € R'. From this it follows, take;* = a®*.q andq’ = t >> ¢, that there exisg* andq’

such that®t.q = ¢* (iZt ¢ and(a®t.p,q¢*) € R' and(p',¢') € R'.
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— Suppose thai®.p ~,, for someu € Time. Then, by inspection of the deduction rules it follows that
u < t. Then we also have®t.q ~»,. From this it follows, take* = a®*.q, that there exists &" such
thata®t.q = ¢* ~, and(a®t.p,¢*) € R'.

As a part of the above proof of the transfer conditions we feready shown that the paie®t.p, a°*.q)
satisfies the root condition.

B.2 Alternative Composition

Assume thap, <, ¢1 and thatpy <, ¢o». Furthermore, assume th&4 and R, are the witnesses for
these assumptions. Define

R={(p1 +p2, 1 + @), (@1 + q2,p1 + p2)} U R1 U Rs.

Itis trivial that the pairs fronR? that are also iR, or R, satisfy the transfer conditions of timed branching
bisimilarity. Thus it remains to verify this for the paitg: + p2,¢1 + ¢2) and(¢1 + g2, p1 + p2). Due to
symmetry considerations it suffices to consider the @Qair+ p2, ¢1 + g2) only.

— Suppose thap, + p —; p for somea € Act, t € Time, and closed ternp. Then, by inspection
of the deduction rules it follows that, —; p or p, —; p. The two cases are symmetrical, thus we
only consider the case that %, p. Since(p1,q1) € R, andR; is a branching bisimulation relation
that satisfies the root condition f@p;, ¢1 ) it follows that there exists a closed process tgrsuch that
@ =; gand(p,q) € Ry. Then we also have, + ¢» ; ¢ and(p,q) € R;. From this it follows,
takeq* = q; + g0, that there exisy* andq such thay; + ¢» = ¢* %; ¢ and(p; + p2,¢*) € Rand
(p.q) € R.

— Suppose that; +p, — p for some closed term. Then, by inspection of the deduction rules it follows
thatp; = p or p, — p. The two cases are symmetrical, thus we only consider treetbasp, — p.
Since(p1,q1) € R; and R, is a branching bisimulation relation that satisfies the amtdition for
(p1,q1) it follows that there exists a closed process tersuch thay; — ¢ and(p, ¢) € R;. Then we
also havey, + ¢ — g and(p,q) € R,. From this it follows, take* = ¢; + ¢2, that there exisg* and

g suchthaty + ¢2 = ¢* @ gand(p; + p2,q*) € Rand(p,q) € R.

— Suppose that; + po |, for somet € Time. Thenp; |; or po |;. These cases are symmetrical, thus
we only consider the first case. Singe,¢1) € Ry and R, is a branching bisimulation relation that
satisfies the root condition fdp1, ¢1) it follows thatg; |:. Then we also have, + ¢2 |:. From this it
follows, takeq* = ¢1 + ¢, that there exists &" such that; + ¢> = ¢* |; and(p; + p2,q*) € R.

— Suppose thagt; + ps ~; for somet € Time. Thenp; ~; or po ~;. These cases are symmetrical, thus
we only consider the first case. Sin@a, ¢1) € R, and R, is a branching bisimulation relation that
satisfies the root condition fdp, ¢1 ) it follows thatg; ~~;. Then we also have, + ¢ ~~;. From this
it follows, takeg* = ¢; + g2, that there exists @ such that; +g¢2 = ¢* ~»; and(p1 +p2, ¢1,¢2) € R.

As a part of the above proof of the transfer conditions we fadremdy shown that the péip, + p2, g1 +¢2)
satisfies the root condition.

B.3 Time initialisation

Assume thap <, ¢. Furthermore, assume thatis the witness for this assumption. Define

R={t>p,t>q¢)|,¢d)e R} UR.
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It is trivial that the pairs fromR’ that are also inR satisfy the transfer conditions of timed branching
bisimilarity. Thus it remains to verify this for the paifs > p’,¢t > ¢') with (p,¢') € R. Thereto,
consider arbitrary’ andq’ such tha(p’, ¢’) € R.

— Suppose that > p’ %, p”" for somea € Act, u € Time, and closed process tenff. By inspection
of the deduction rules his must be dugsto®, p” andt < u. Since(p’, ¢') € R andR is a branching
bisimulation relation it follows that there exigt andq” such thay = ¢* %, ¢” and(p’,¢*) € R

a

and(p”,q") € R.Butthenalsot > ¢ = t > ¢* —, ¢" and(t > p/,t > ¢*) € R’ and
(", q") e R'.
— Suppose that > p’ = p” for some closed process tepth. By inspection of the deduction rules his

must be due tp’ = p”” for somep’” such thap” =t > p”’. Since(p’, ¢’) € R andR is a branching

bisimulation relation it follows that there exigt and¢”’ such thay’ = ¢* @ q¢" and(p’,q¢*) € R

and(p”,q¢"") € R.Butthen alsa > ¢ = ¢t > ¢* ) 4 > ¢"” and(t > p/,t > ¢*) € R’ and

(t > pm,t > q///) cR.

— Suppose that > p’ |, for someu € Time. This must be due tp’ |, andt < . Since(p’,q') € R
and R is a branching bisimulation relation it follows that therests ag* such thaty’ = ¢* |, and
(p',q*) € R.Butthenalsd > ¢ =t > ¢* |, and(t > p',t > ¢*) e R,

— Suppose that > p’ ~~, for someu € Time. This must be due tp’ ~~,, oru < ¢. In the first case,
since(p’,¢') € R andR is a branching bisimulation relation it follows that thesésts a¢* such that
q = q* ~,.and(p’,¢*) € R.Butthenalsa > ¢ =t > ¢* ~,.and(t > p',t > ¢*) € R'. In
the second case, it immediately follows that> ¢’ ~~,. From this it follows, take* =t > ¢/, that
there exists @* such that > ¢’ = ¢* ~, and(t > p’,¢*) € R.

The proof that the paift > p,t > q) satisfies the root condition follows the same lines as the@bo
proofs and is therefore omitted.

B.4 Silent Step Prefix

Assume thap <, ¢. Furthermore, assume thatis the witness for this assumption. Define

R ={(r.p,7.q), (r.q,7.p)} UR.

It is trivial that the pairs fronR’ that are also iR satisfy the transfer conditions of timed branching bisim-
ilarity. Thus it remains to verify this for the pai(s.p, 7.¢) and(7.¢, 7.p). Due to symmetry considerations
it suffices to consider the pajt.p, 7.q) only.

Since the process termp does not have action transitions, termination predicatesdelay predicates,
these cases are trivially satisfied.

— Suppose that.p = p’ for some closed termy’. Then, by inspection of the deduction rules it follows
thatp’ = p. Using the deduction rules we also obtaig — ¢. We also have thatp, ¢) € R. From

this it follows, takeq* = 7.g andq’ = ¢, that there exist* and¢’ such thatr.q = ¢* ) q and

(plvq*) € R and(pa Q) € R

As a part of the above proof of the transfer conditions we ladremdy shown that the pdir.p, 7.q) satisfies
the root condition.
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B.5 Abstraction

Assume thap <, ¢. Furthermore, assume thatis the witness for this assumption. Define

R ={(r1(¥"),71(¢") | #',q') € R} UR.

It is trivial that the pairs fromR’ that are also inR satisfy the transfer conditions of timed branching
bisimilarity. Thus it remains to verify this for the paits; (p'), 77 (¢’)) with (p’, ¢') € R. Thereto, consider
arbitraryp’ andq’ such thatp’, ¢') € R.

— Suppose that; (p') ., p" for somea € Act, u € Time, and closed process tenf. By inspection
of the deduction rules his must be duedaz I andp’ =, p””’ for some closed terrp’”’ such that
p" = 71(p"). Since(p’,¢') € R and R is a branching bisimulation relation it follows that there
exist ¢* and ¢’ such thaty = ¢* %, ¢ and(p’,q*) € R and(p”,¢"") € R. But then also
m1(¢") = 11(q*) Lo 71(¢"") and(;(p'), 71(¢*)) € R and(r;(p""), 71(¢"")) € R'.

— Suppose that;(p’) = p” for some closed process tepfi. By inspection of the deduction rules his
must be due to (1) € I andp’ %, p” for somep’”” andt € Time such thap” =t > p’”, or due to
(2)p' = p" for some closed term”’ such thap” = 7;(p").

In the first case, sinc&’,q¢’) € R and R is a branching bisimulation relation it follows that there
exist ¢* and ¢’ such thaty’ = ¢* %; ¢” and(p’,q¢*) € R and(p",¢”") € R. But then also
m1(¢") = 11(q*) Z¢ 1(¢") and (77 (p'), 71 (¢*)) € R and(r;(p"), 71(¢")) € R'.

In the second case, sin¢g, ¢') € R andR is a branching bisimulation relation it follows that there

exist ¢* and ¢’ such thaty = g¢* () ¢" and (p’,¢*) € R and(p’”,¢") € R. But then also

m1(¢) = m1(a7) 7 mi(g") and(ri (), 71 (q")) € R and(rs ("), 71(¢") € R

— Suppose that;(p’) |+ for somet € Time. This must be due tp’ |;. Since(p’,¢’) € RandRis a
branching bisimulation relation it follows that there égiaq* such thay’ = ¢* |; and(p’, ¢*) € R.
But then alsor; (¢') = 77(¢*) |+ and (71 (p’), 71(¢*)) € R'.

— Suppose that;(p') ~~; for somet € Time. This must be due tp’ ~~;. Since(p’,¢') € RandRis a
branching bisimulation relation it follows that there égiag* such thay’ = ¢* ~~; and(p’, ¢*) € R.
But then alsor; (¢') = 77(¢*) ~+ and (71 (p’), 71(¢*)) € R'.

B.6 Sequential Composition

Assume thap, <., ¢1 and thatps <, ¢». Furthermore, assume th& and R, are the witnesses for
these assumptions. Define

R={(p} p2q1 - a),(q1 - q2,01 - p2) | (P,q1) € Ri}URs,,,

whereRs,, is the relation that is used to prove congruence with redpebie time-initialisation operator,
taking R, for R.

For the proof that the pairs fromRs,, also satisfy the transfer conditions please refer to thefpod
congruence with respect to the time-initialisation oparalhus it remains to verify this for the pairs
(P - p2,q1 - q2) and (¢} - g2, ) - p2) with (p,q}) € R;. Due to symmetry considerations it suffices to
consider the pair§) - p2, ¢} - ¢2). Thereto, consider arbitragy; andg; such thaip}, ¢;) € Rs.

— Suppose that] - p» =, p for somea € Act, t € Time, and closed term. Then, by inspection of the
deduction rules it follows that], ; p’ for somep’ such thap = p’ - py, orp} |, andu > py %, p
for someu € Time. In the first case, sinc@/, ¢;) € Ry andR; is a branching bisimulation relation
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it follows that there exist* andq such thay, = ¢* %, ¢ and(p},¢*) € Ry and(p’,q) € R;. But
then alsay| - g2 = ¢* - g2 ¢ ¢ - g2 and(p} - pa,q* - g2) € Rand(p' - p2,q - ¢2) € R.

In the second case, by inspection of the deduction ruledlivie thatp, —; p andu < t. Since
(p1,q1) € Ry and Ry is a branching bisimulation relation it follows that thepdsts aq such that
q; = q l, and(p},q) € R;. And since(ps,g2) € R and R, is a branching bisimulation relation
that satisfies the root condition f@p,, ¢2) it follows that there exists @ such thaty, ; ¢’ and
(p,q') € Ry. Due tou < t we also have: > ¢, %, ¢’. Butthen alsay, - ¢» = ¢ - ¢2 —; ¢’ and
(p} - p2,q-q2) € Rand(p,q’) € R.

Suppose that) - p» — p for some closed term. Then, by inspection of the deduction rules it follows
thatp) = p’ for somep’ such that = p’-po, orp} |, andu > py — pfor someu € Time. In the first
case, sincép, ¢}) € R, andR; is a branching bisimulation relation it follows that theseés¢ ¢* and

g such thaty} = ¢* ) gand(p},q*) € Ry and(p’,q) € Ry. Butthen alsa@| - g2 = ¢* - q2 ) q-q
and(p} - p2,¢* - g2) € Rand(p’ - p2,q - q2) € R.

In the second case, by inspection of the deduction ruleatfie that there existsal such thap, — p’
andp = u > p'. Since(p}, ¢}) € R1 andR; is a branching bisimulation relation it follows that there
exists ag such thaty; = ¢ |, and(p,q) € R;. And since(p2,q2) € Re and R, is a branching
bisimulation relation that satisfies the root condition fps, ¢») it follows that there exists @ such
thatg, — ¢’ and(p’,¢') € R,. Then we also have > ¢, = u > ¢’ and(u > p/,u > ¢') € Rs..
Butthen alsay, - g2 = q- g2 — u>> ¢’ and(p) - p2, ¢ - q2) € Rand(p,u > ¢') € R.

Suppose thap) - po |; for somet € Time. This must be due tp| |, andu > po |, for some
u € Time. Furthermore, from inspection of the deduction rules ilofek thatp, |; andu < ¢. Since
(p1,¢1) € Ry andR; is a branching bisimulation relation it follows that thepdsts ag* such that
q; = ¢* |, and(p},q*) € Ry. And since(ps, g2) € Re andRs is a branching bisimulation relation
that satisfies the root condition fGps, ¢-) it follows thatgs |;. Due tou < t we also have: > ¢5 |;.
But then alsay] - g2 = ¢* - q2 |: and(p} - p2,¢* - ¢2) € R.

Suppose that) - po ~; for somet € Time. This must be due tp} ~; orp} |, andu > ps ~, for
someu € Time. In the first case, sinc®’, ¢j) € R, andR; is a branching bisimulation relation it
follows that there exists@ such thay; = ¢* ~»; and(p}, ¢*) € R;.Butthenals@; g = ¢*-qo ~¢
and(p - p2,q¢" - ¢2) € R.

In the second case, by inspection of the deduction rulesllawe thatp, ~»;, andu < t. Since
(p1,4}) € Ry and R, is a branching bisimulation relation it follows that thepasts ag* such that
4, = ¢* |, and(p},q*) € Ry. And since(ps, q2) € Re andRs is a branching bisimulation relation
that satisfies the root condition fdps, ¢2) it follows that g ~»;. Due tou < ¢t we also have, >>
g2 ~¢. Butthen alsay; - g2 = ¢ - g2 ~ and(p} - p2, 4" - g2) € R.

The proof that the paifp] - p2, ¢; - g2) satisfies the root condition follows the same lines as theepmofs
and is therefore omitted.

B.7 Parallel Composition

Assume thap; <, ¢1 and thaps <, ¢2. Furthermore, assume th&t and R, are the witnesses for these
assumptions. Defin®s,, to be the smallest relation such tHat C R, and if (p,q) € R, then also
(t>p,t > q) € Rs,. DefineRs,, to be the smallest relation such thas C R, and if (p,q) € R,
then alsdt >> p,t > q) € Rs,,. Define

R={@) I vh. a1 Il ) | (01, q1) € Rs, A (Ph,q5) € R, }-

We first prove that?s,, and R, are branching bisimulation relations. The proofs fog, andRs., are
essentially the same, thus we will only give the proofftg, . We do this by induction on the construction
of relation R, .
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— Suppose that a pair is iR, since it is inR;. The transfer conditions hold trivially for such a pair
sinceR; is assumed to be a rooted branching bisimulation relation.

— Suppose that a pair is iRs., because it is of the fornt > p,t > ¢) for somep andq such that
(p,q) € Rs.,. By induction we have that the p&jp, ¢) satisfies the transfer conditions. Then, by the
proof of congruence with respect to the time-initialisataperator, we have that the transfer conditions
hold for (t > p,t > ¢).

It remains to verify that the transfer conditions hold foe frairs(p) || p5, ¢; || ¢5) with (p},¢}) € Rs., and
(ph, ¢4) € Rs.,. Thereto, consider arbitrapy, ¢1. p5 andg) such thafp), ¢;) € Rs., and(ph, ¢}) € Rs.,.

— Suppose that) || p), % p for somea € Act, t € Time, and closed term. Then, by inspection of the
deduction rules it follows that, % p’ andp), ~; for somep’ such thap = p’ || t > ph, orph 2 p’
andp; ~-. for somep’ such thapp = ¢ > p} || p’. Assume the first case. Sin¢g/, ¢;) € Rs, and
R, is a branching bisimulation relation it follows that thesést ¢F andq such thaty, = ¢& %, ¢
and(p},q}) € Rs, and(p’,q) € Rs,,. Furthermore, sinc&), ¢}) € Rs., andRs,, is a branching
bisimulation it follows that there existsgg such that), = ¢5 ~~: and(p5, ¢5) € Rs.,. But then also
¢ 1 ds=ai lao=ai g5 =eallt>a5and(py || ph,af || ¢3) € Rand(p' || t > ph,q || t >
¢3) € R. The alternative case is symmetric to this one.

— Suppose thap!, || p, — p for some closed termp. Then, by inspection of the deduction rules it
follows thatp) = p’ for somep’ such thap = p’ || ph, or p, = p’ for somep’ such thap = p} || p'.
Assume the first case. Sin¢g/, ¢;) € Rs., andRs,, is a branching bisimulation relation it follows

that there exisg; andgq such thay] = ¢} @ gand(pi,qi) € Rs, and(p’,q) € Rs,. Butthen also

% (r) X .
gl ah=ai | @5 = qll gband(p; || phq; || ¢5) € Rand(p' || ph,q || ¢5) € R. The alternative
case is symmetric to this one.

— Suppose that] || p5, |+ for somet € Time. Then, by inspection of the deduction rules it follows that
p} 1+ andpy |;. Since(p},q}) € Rs, and R, is a branching bisimulation relation it follows that
there exists @; such thaiy} = ¢ |: and(p},¢}) € R, . Furthermore, sincé, ¢5) € R, and
R, is a branching bisimulation relation it follows that thebdsts ags such thatg, = ¢5 |, and
(P, 43) € R, Butthenalsay || g3 = ¢f | a5 = qf || g5 |« and(py || p5, 47 || ¢3) € R.

— Suppose that} || p, ~~: for somet € Time. Then, by inspection of the deduction rules it follows that
P~ andp), ~-;. Since(p), ¢;) € Rs., andR,, is a branching bisimulation relation it follows that
there.exists a5 sgch thgt;’l = i~ a}nd(_p’l,q;‘) € Rs,,. Fur.thermore, sincéph, ¢4) € R, and
R, is a branching bisimulation relation it follows that thesésts ags such thaty, = ¢4 ~; and
(P2, ¢3) € R, Butthenalsay | ¢5 = ¢i || ¢2 = ¢f || @3 ~¢and(p || p5, 47 [l ¢5) € R.

The proof that the paifp: || p2,¢1 || ¢2) satisfies the root condition follows the same lines as theabo
proofs and is therefore omitted.
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